Оглавление

ПРЕДИСЛОВИЕ

Петр Леонидович — ученый очень широкого профиля. Крупнейший физик-экспериментатор, он внес значительный вклад в развитие физики магнитных явлений, физики и техники низких температур, квантовой физики конденсированного состояния, электроники и физики плазмы.

Петр Леонидович родился 9 июля 1894 г. в семье военного инженера. Свою научную деятельность он начал на кафедре А. Ф. Иоффе на электро-механическом факультете Петроградского политехнического института, который он окончил в 1918 г.

В своей первой оригинальной научной работе Петр Леонидович разработал новый метод приготовления волластоновских нитей — тонких (толщиной менее одного микрона) платиновых или золотых проволок, получаемых протяжкой в серебряной оболочке и последующим ее растворением. П. Л. Капица применил электролитический способ растворения серебра и этим уменьшил опасность обрыва тонких нитей. В следующей своей работе П. Л. Капица предложил оригинальную модель рентгеновского спектрометра, в котором интенсивность отраженных от кристалла рентгеновских лучей повышалась во много раз благодаря использованию эффекта фокусировки от кристалла с изогнутой цилиндрической поверхностью.

Третья опубликованная работа Петра Леонидовича была выполнена совместно с Н. Н. Семёновым. В этой работе был предложен метод определения магнитного момента атома, основанный на взаимодействии атомного пучка с неоднородным магнитным полем. Этот метод был затем осуществлен в известных опытах Штерна и Герлаха.

В 1921 г. П. Л. Капица был командирован для научной работы в Англию, где он долгое время работал в Кавендишской лаборатории Кембриджского [с.5] университета, директором которой был Э. Резерфорд. В /923 г. Петр Леонидович впервые поместил камеру Вильсона в сильное магнитное поле и наблюдал искривления траекторий α-частиц. В этих исследованиях он столкнулся с необходимостью создания сверхсильных магнитных полей. Он показал, что применение электромагнитов с железными сердечниками для этой цели бессмысленно и нужно переходить к катушкам, пропуская через них очень большой ток. Основная трудность, возникающая при этом, состоит в перегреве таких катушек. П. Л. Капица предложил оригинальный метод для преодоления этой трудности — создавать кратковременные магнитные поля пропусканием очень большого тока через катушки: за короткое время катушка не успевает нагреться. Испробовав различные источники тока, он остановился на специальной конструкции мотор-генератора. В этом генераторе энергия, необходимая для создания магнитного поля, накапливалась в виде кинетической энергии ротора. На своей установке Петру Леонидовичу удалось получить магнитное поле напряженностью 320 килоэрстед при длительности импульса порядка 10 миллисекунд. Принцип создания импульсных полей теперь широко используется во многих лабораториях. С развитием техники стало возможным использовать конденсаторы в качестве накопителей энергии, однако по величине магнитной энергии, полученной в катушке, результат П. Л. Капицы до сих пор является рекордным. Им были также разработаны оригинальные методы измерений различных физических параметров в импульсных полях.

Одним из основных результатов проведенных П. Л. Капицей исследований изменений физических свойств вещества в сильных магнитных полях явилось открытие им линейного закона для зависимости от магнитного поля электрического сопротивления ряда металлов в очень сильных магнитных полях. Этот закон, открытый им в 1928 г., нашел теоретическое объяснение лишь спустя 30 лет, когда была обнаружена сложная топологическая структура поверхностей Ферми в металлах.

Петром Леонидовичем была исследована магнитострикция пара- и диамагнитных веществ в сильных магнитных полях и открыта аномально большая магнитострикция монокристаллов висмута. Он обнаружил очень сильную анизотропию этой магнитострикции: при наложении магнитного поля вдоль тригональной оси висмут растягивался в направлении поля, а в поле, приложенном перпендикулярно оси — сжимался. П. Л. Капица исследовал также эффект Зеемана в сильных магнитных полях и наблюдал эффект Пашена — Бака.

Дальнейшая научная деятельность П. Л. Капицы связана с физикой низких температур. И здесь он начал с критического рассмотрения существовавших тогда методов получения низких температур и разработал новую оригинальную установку для ожижения гелия. В этой установке П. Л. Капице удалось избавиться от необходимости предварительно охлаждать гелий жидким водородом. Вместо этого гелий в его установке охлаждался, совершая работу в специальном расширительном детандере. Особенность этого поршневого детандера состояла в том, что смазку в нем осуществлял сам газообразный гелий.

Практически все изготовляемые в последнее время ожижители гелия строятся по принципу, предложенному П. Л. Капицей. Для проведения исследований [с.6] в сильных магнитных полях и при низких температурах в Кембридже была построена специальная лаборатория им. Монда Лондонского Королевского общества, директором которой был назначен П. Л. Капица.

В 1934 г. П. Л. Капица возвращается в Москву и организует здесь Институт физических проблем, в котором продолжает исследования в сильных магнитных полях и по физике и технике низких температур.

В области техники низких температур Петр Леонидович разрабатывает новый метод ожижения воздуха с циклом низкого давления, в котором используется специальный турбодетандер, обладающий высоким коэффициентом полезного действия.

Разработанный П. Л. Капицей высокоэффективный радиальный турбодетандер с к.п.д. в 80-85% предопределил развитие во всем мире современных крупных установок разделения воздуха для получения кислорода, использующих только низкое давление.

В Советском Союзе работают и строятся мощные воздухоразделительные аппараты с использованием низкого давления, производительностью от 10 000 до 65 000 кубических метров кислорода в час. В промышленно развитых странах Запада на воздухоразделительных установках низкого давления, т. е. с использованием турбодетандеров типа, предложенного П. Л. Капицей, в 1970 г. было добыто около 53 млрд. кубических метров кислорода. Около половины получаемого кислорода используется в черной и цветной металлургии. Помимо металлургии кислород широко используется в химической промышленности и ракетной технике.

Здесь уместно отметить, что работы П. Л. Капицы по сверхсильным полям и ожижителям, демонстрируют редкое сочетание в одном человеке крупного ученого и инженера.

Петр Леонидович — одним из первых использовал в лаборатории крупные современные технические агрегаты и в то же время переносил последние достижения физики непосредственно в практику. Это было начало того процесса, который теперь развился в полной мере и является характерной чертой современной научно-технической революции.

В области физики низких температур П. Л. Капица начинает серию чрезвычайно изящных экспериментов по изучению свойств жидкого гелия. Результатом этих экспериментов было открытие Петром Леонидовичем в 1937 г. сверхтекучести гелия. Им было показано, что вязкость жидкого гелия при температуре ниже 2,19° К при его протекании через тонкие щели во столько раз меньше вязкости любой самой маловязкой жидкости, что она, по-видимому, равна нулю, и поэтому он назвал такое состояние гелия сверхтекучим. В ходе исследований аномальных свойств жидкого гелия П. Л. Капица поставил ряд необычайно тонких и наглядных экспериментов, доказывающих совершенно необычные свойства жидкого гелия при температуре ниже 2,19° К.

Работы П. Л. Капицы по изучению свойств жидкого гелия — блестящий образец подхода настоящего физика-экспериментатора к разрешению сложной проблемы. Когда читаешь его статьи, получаешь эстетическое удовольствие, [с.7] следя за тем, как шаг за шагом, ставя все новые эксперименты, Петр Леонидович приходит к фундаментальному открытию сосуществования в гелии двух жидкостей с совершенно различными свойствами, которые могут двигаться навстречу друг другу.

Это открытие положило начало развитию совершенно нового направления в физике, а именно квантовой физике конденсированного состояния. Для его объяснения пришлось ввести новые квантовые представления — так называемые элементарные возбуждения, или квазичастицы.

В процессе исследований теплопередачи в жидком гелии Петр Леонидович установил также следующий важный факт: при передаче тепла от твердого тела к жидкому гелию на границе раздела возникает скачок температуры, величина которого сильно растет с понижением температуры — так называемый скачок Капицы. Это также показало необходимость квантового подхода к описанию, казалось бы, столь классического явления, как явление переноса.

В конце 40-х годов П. Л. Капица обращается к совершенно иному кругу физических задач — к вопросу о создании мощных генераторов СВЧ колебаний непрерывного действия. Петру Леонидовичу удалось решить сложную математическую задачу о движении электронов в СВЧ генераторах магнетронного типа.

На базе этих расчетов он конструирует СВЧ генераторы нового типа — планотрон и ниготрон. Мощность ниготрона составляет рекордную величину — 175 квт в непрерывном режиме. В процессе изучения этих мощных генераторов П. Л. Капица столкнулся с неожиданным явлением — при помещении колбы, наполненной гелием, в пучок излучаемых генератором электромагнитных волн в гелии возникал разряд с очень ярким свечением, а стенки кварцевой колбы плавились. Это навело Петра Леонидовича на мысль, что применяя мощные СВЧ электромагнитные колебания, можно нагреть плазму до очень высоких температур.

Он присоединяет к ниготрону камеру, представляющую собой резонатор для СВЧ колебаний. Наполняя эту камеру различными газами (гелий, водород, дейтерий) под давлением в 1—2 атмосферы, Петр Леонидович обнаружил, что в центре камеры (где интенсивность СВЧ колебаний максимальная) в газе возникает шнуровой разряд.

Применяя различные методы диагностики плазмы, П. Л. Капица показал, что температура электронов плазмы в этом разряде составляет около 1 миллиона градусов. Эти исследования П. Л. Капицы, которые он интенсивно продолжает, открыли новый путь в решении задачи о создании термоядерного реактора, позволили ему произвести полный расчет такого реактора.

В первом разделе настоящей книги собраны доклады и лекции, в которых Петр Леонидович рассказывает о работах по сверхсильным магнитным полям, о знаменитых опытах, приведших к открытию сверхтекучести гелия, и о проблемах получения и использования кислорода. В этом разделе публикуется также статья П. Л. Капицы «О природе шаровой молнии». Толчком к написанию этой работы послужил описанный выше эксперимент с возникновением разряда в поле излучения мощных генераторов. [с.8]

Петр Леонидович Капица является не только выдающимся ученым, но и крупным организатором науки. Будучи директором Института физических проблем, членом Президиума Академии наук СССР и главным редактором ведущего физического журнала страны, он отдает много сил конкретной научно-организационной деятельности.

Как и в своей научной работе, он и здесь выступает новатором, борющимся против бюрократических методов руководства и ищущим наиболее прогрессивные методы в организации управления таким тонким механизмом, каким является коллектив творческих научных работников. Второй раздел настоящей книги содержит выступления Петра Леонидовича, посвященные этой теме.

В этом разделе публикуется доклад об организации научной работы в Институте физических проблем АН СССР. Читатели старшего поколения вспомнят, что многое, о чем говорил Петр Леонидович в начале 40-х годов, в то время звучало очень необычно, а сейчас стало нормой работы в большинстве институтов. В этом разделе собраны также выступления П. Л. Капицы по более общим вопросам организации и планирования науки и ее связи с производством.

Петр Леонидович Капица всегда уделяет большое внимание проблемам воспитания и отбора молодежи, способной к творческой научной работе. Он был одним из инициаторов создания Московского физико-технического института и является председателем Координационного совета этого института.

Петр Леонидович всегда сам проводит заседания Государственной экзаменационной комиссии по защите дипломов студентами МФТИ, выполнявшими свои дипломные работы в Институте физических проблем. Он также всегда сам принимает вступительные экзамены в аспирантуру и к каждому экзамену составляет набор задач для экзаменующихся. Особенность этих задач состоит в том, что они не имеют стандартного решения. В задачах всегда рассматривается конкретный физический опыт или явление. В процессе их решения экзаменующийся должен сам проанализировать, какие взаимодействия и эффекты в рассматриваемом явлении являются существенными, а какими можно пренебречь.

В третьем разделе книги приведены некоторые из задач такого типа. В этом же разделе приведены выступления Петра Леонидовича, посвященные проблемам творческого воспитания молодежи.

В четвертом разделе книги собраны статьи П. Л. Капицы, посвященные ряду выдающихся ученых. Многие из этих статей возникли в результате обработки его выступлений на юбилейных заседаниях, посвященных памяти этих ученых.

Благодаря тому, что Петр Леонидович ко всякому своему выступлению относится весьма серьезно, он внес большой оригинальный вклад и в область истории науки, проводя глубокий анализ научного творчества ряда ученых, стремясь вскрыть объективные причины и индивидуальные черты, способствовавшие успеху их научной деятельности.

В статьях о людях, с которыми Петр Леонидович был близок (Э. Резерфорд, И. П. Павлов, П. Ланжевен, Л. Д. Ландау), он рисует их яркие живые портреты. [с.9]

В этом разделе публикуется также доклад П. Л. Капицы «О некоторых этапах развития исследований в области магнетизма», с которым он выступил на открытии Международной конференции по магнетизму в /973 г.

Петр Леонидович Капица не только большой ученый и выдающийся организатор науки — он крупный общественный деятель. Его волнуют все аспекты развития человеческого общества. Он — член Советского национального комитета Пагоушского движения ученых за мир и разоружение и активно участвует в этом движении. Он неоднократно выступал по вопросам будущего развития человеческого общества, особенно в связи с такими актуальными проблемами, как борьба за разоружение, проблема загрязнения окружающей среды, экологический кризис. Часть таких выступлений собрана в пятом разделе книги.

Петру Леонидовичу Капице исполняется восемьдесят лет. Он полон сил и творческих планов. Несмотря на большую занятость научно-организационными и общественными делами, он ежедневно работает в своей лаборатории. Его энергии и увлеченности работой могут позавидовать многие молодые научные работники.

СИЛЬНЫЕ МАГНИТНЫЕ ПОЛЯ. ИХ ПОЛУЧЕНИЕ И ЭКСПЕРИМЕНТЫ С НИМИ

Доклад на заседании Студенческого научного клуба Оксфордского университета 27 февраля 1931 г.

В свете современных знаний мы считаем, что структура атома, по существу, является динамической, т. е. атом представляет собой систему, в которой заряженные тела вращаются вокруг центрального ядра, причем свойства атома полностью зависят от числа электронов и вида их орбит. Следовательно, такие свойства, как, например, магнитные моменты, силы сцепления, спектры и т. д., можно изменить, если найти средство возмущать движение орбитальных электронов. Наиболее эффективно это можно сделать, воздействуя на атом внешним магнитным полем.

Внутреннее магнитное поле, создаваемое в атоме движением электронов по орбитам, очень велико, но если было бы возможно получить внешнее поле такой же величины, очевидно, что движение электронов изменилось бы существенным образом, так как энергия связи между ними была бы того же порядка, что и возмущение, созданное полем; в этом случае мы должны были бы ожидать получения существенных результатов. Однако когда мы переходим к оценке величины поля внутри атома, мы находим, что даже для наиболее слабо связанных электронов оно приближается к 1 000 000 гауссам. Такое поле примерно в 30 раз больше, чем обычно получаемое в лабораториях. Предметом моего [с.11] исследования являлась разработка метода получения полей такого порядка величины.

Обычный путь создания сильного магнитного поля — использование электромагнита, но величина поля при этом жестко ограничена из-за насыщения железа. Увеличить поле можно лишь чрезмерно увеличивая вес магнита и используемый ток. Самый большой магнит, который когда-либо был построен, это магнит профессора Коттона: диаметр его железного сердечника почти 1 метр (в пространстве между полюсами может встать человек) и для его работы требуется громадный ток. Магнитное поле возрастает очень медленно с возрастанием размера электромагнита, и даже магнит профессора Коттона не создает поля больше 60000 гаусс в объеме, достаточном для проведения экспериментов.

Оказалось, что более успешным методом является использование катушек. При этом требуются очень большие токи, так как величина поля в катушке пропорциональна возбуждающему току. Очевидно, что для создания больших полей таким путем необходимо увеличивать ток, но при этом мы встречаемся с трудностями, поскольку, с одной стороны, нам нужен источник очень большого тока, а с другой стороны, величина тока в этом случае существенно ограничена нагреванием катушки током.

Одним из способов уменьшения теплового эффекта мог бы явиться отвод тепла по мере его выделения; другой способ — охлаждение катушки до очень низкой температуры. При этом значительно уменьшилось бы сопротивление, а в некоторых металлах оно даже упало бы до нуля, если бы металл стал сверхпроводником. В этом случае трудностью явилось бы то, что магнитное поле, созданное катушкой, разрушило бы сверхпроводящее состояние и очень быстро увеличило бы сопротивление до значения, близкого к его величине при комнатной температуре. Ни один из этих методов не кажется достаточно перспективным, и даже если их реализовать наиболее эффективным способом, они вряд ли позволили бы создать поле, большее 50 000—60 000 гс. Если предположить возможность изготовления эффективной катушки с внутренним диаметром в 1 см, то, как показывает расчет, для создания в такой катушке поля в 1 000 000 гс потребуется мощность в 50 000 квт и катушка за 1 сек нагреется до 10 000° С; ясно, что мы не можем работать с таким большим нагревом.

Основная идея нашего метода решения проблемы заключалась в том, чтобы сделать время существования поля очень коротким, так чтобы за это время катушка не могла перегреться. Практически это составляло 0,01 сек. Конечно, такое условие создает новый ряд трудностей, во-первых, требуется очень большой ток, а во-вторых, все измерения нужно делать за очень короткий промежуток времени. [с.12]

Наши первые эксперименты были сделаны с использованием аккумуляторной батареи, обладающей очень малой емкостью и малым внутренним сопротивлением. Таким способом мы смогли получить поле в 100 000 гс, заряжая аккумуляторы в течение несколько минут, а затем разряжая их за 0,01 сек; но дальнейшее увеличение поля было невозможным, так как оказалось, что трудно достаточно быстро прервать ток в несколько тысяч ампер.

В наших последующих экспериментах, когда потребовались большие мощности, мы использовали однофазный генератор переменного тока (см. рисунок). Хорошо известно, что такая машина дает очень большие импульсы тока при коротком замыкании, чего в обычной практике тщательно избегают, так как это может вызвать серьезную аварию. Наша машина была специально сконструирована с противоположными целями, так что можно было специально получать большие импульсы тока при коротком замыкании. Потребовались значительный пересмотр конструкции и тщательные расчеты, так как электродинамические силы могли бы легко привести к разрыву обмоток. Машина имела такие размеры, что ее мощность в непрерывном режиме составляла 2000 квт, а при

kap-3.jpg

[с.13]

kap-4.jpg

коротком замыкании при испытаниях она давала 220 000 квт. При коротком замыкании на катушку с таким же импедансом, что и у машины, только половина мощности может быть использована; половина ее теряется в машине, а другая половина идет в катушку. Таким образом и были получены требуемые 50 000 квт.

Обычно ток в такой катушке никогда не оставался постоянным, но при определенной конструкции аппаратуры можно было получить волну тока с плоской вершиной, которая дает постоянное магнитное поле на несколько тысячных секунды.

Наибольшая трудность, с которой мы столкнулись, заключалась в том, что катушки стремились разорваться из-за электродинамических сил, старающихся увеличить их диаметр. Мы разработали метод укрепления катушек стальными бандажами и сконструировали катушку такой формы, чтобы электродинамические силы вместе с силами реакции со стороны бандажа сводились к однородному (гидростатическому) давлению на медь. (Катушка для создания импульсных магнитных полей изображена на рисунке слева). Нагрузка внешнего бандажа теперешней катушки достигает 140 тонн.

Другой проблемой явилась разработка специального выключателя для прерывания тока синхронно с волной тока. Так как продолжительность тока составляла лишь 0,01 сек, время, [с.14] отведенное на переключение, составляло лишь несколько десятитысячных секунды, в течение которых контактная медная пластина выключателя должна была отойти на несколько миллиметров от его щеток. Ускорение, требуемое для передвижения медной пластины весом в 1 кг на такое расстояние, примерно в 1 000 раз больше ускорения свободного падения, а требуемая сила превышает тонну. Для этой цели использовался чрезвычайно прочный и тщательно сконструированный кулачковый вал.

Управление было организовано таким образом, что с помощью различных приспособлений после нажатия одной единственной кнопки эксперимент проводился автоматически, а осциллограммы показывали значения тока в катушках и тем самым позволяли измерить магнитное поле.

Затем нам пришлось преодолеть трудность, вызванную ударом при внезапной остановке генератора. При замыкании угловая скорость якоря, который весит 2,5 тонны, уменьшается на 10% за 0,01 сек и возникает большой вращающий момент, который стремится повернуть всю машину на фундаменте. Чтобы избежать влияния этого удара на наши измерения, катушка помещалась в 20 м от генератора так, чтобы измерения заканчивались прежде, чем сотрясение достигало катушки.

Короткое время эксперимента привело к определенным трудностям при наблюдении и измерении, но в целом потеря во времени компенсировалась выигрышем в величине явления, наблюдаемого в очень сильных полях; оно также дало то большое преимущество, что практически исключило влияние изменения температуры на различные явления, так как в течение 0,01 сек температура оставалась более или менее постоянной.

К настоящему времени мы изучили влияние сильных магнитных полей на различные явления, например, при исследовании эффекта Зеемана мы обнаружили, что расщепление линий оказывается столь велико, что можно использовать обычный призменный спектрограф, имеющий большую светосилу, а время экспозиции можно уменьшить до 0,01 сек без существенного уменьшения точности результатов.

Оказалось, что большой интерес представляет изучение изменения сопротивления различных металлов в сильных магнитных полях; в некоторых случаях возрастание сопротивления составляло от 20 до 30 процентов, в то время как в обычных полях возрастание не превышало долей процента. Более того, мы обнаружили, что в сильных полях наблюдается линейный закон возрастания сопротивления с возрастанием поля, в то время как в обычных полях возрастание сопротивления пропорционально квадрату поля.

Мы измерили также магнитную восприимчивость различных металлов в сильных полях. Для этой цели были разработаны и [с.15] сконструированы специальные весы с собственной частотой около 2000—3000 колебаний в секунду. Так как в наших опытах магнитные силы были примерно в 100 раз больше, чем обычно, то весы были достаточно чувствительны, чтобы измерять восприимчивость большинства веществ.

Другим направлением исследований явилось изучение магнитострикции. В обычных полях это явление известно лишь для ферромагнитных веществ, но в сильных полях мы обнаружили, что оно достаточно заметно в различных других веществах, таких как висмут, олово и графит, которые имеют кристаллическую структуру низкой симметрии. Кристаллы висмута в сильных магнитных полях растягиваются в направлении тригональной оси и сжимаются в направлениях, перпендикулярных к ней.

Видно, что при исследовании различных явлений в сильных магнитных полях, существующих очень короткое время, открываются возможности решения широкого круга научных проблем, но для этого требуются специальная техника и аппаратура.

ПРОБЛЕМЫ ЖИДКОГО ГЕЛИЯ

Доклад на Общем собрании Академии наук СССР 28 декабря 1940 г.

Я чувствую некоторое затруднение, приступая к изложению моих работ в области жидкого гелия. Большинство слушателей привыкло, конечно, к аналитическому мышлению, необходимому во всякой области научной работы, но я боюсь, что сами проблемы физики для многих из вас далеки.

Как всякую научную работу, и работу в области физики можно разделить на три части: первая — цель и задачи исследования, вторая — методы достижения этой цели и третье — полученные результаты и их значение.

Что касается второй части — методов, то в области физики они представляют большой интерес для исследователя и часто в них залог успеха. Но оценить методику работы, технику постановки опыта, методику и точность измерений для человека, не работавшего в лаборатории, и к тому же еще в данной области, мне кажется, очень трудно. Так же как трудно человеку, любящему и понимающему музыку, но не являющемуся музыкантом, оценить трудности техники исполнения музыкального произведения. Но, конечно, это ему не помешает наслаждаться музыкой, любить ее и интересоваться ею. Я думаю, что это замечание справедливо для всех родов творческой работы. [с.16]

Поэтому Я предлагаю в своем изложении остановиться главным образом на тех целях, которые преследовала постановка каждого опыта, и на тех результатах, к которым он нас привел. А о технике экспериментирования буду говорить только вскользь.

Цель всякого научного исследования определяется состоянием науки в данной области, и ясное представление об этом состоянии и вытекающих из него проблемах необходимо иметь не только самому исследователю, но и тем, кому он рассказывает о своих работах. И вот тут я встречаюсь с большими трудностями.

Я боюсь, что физика является одним из наиболее слабых мест в научной подготовке широко образованного человека. В самом деле, мы хорошо знаем историю, мы все читаем таких больших историков, как Ключевский, Тарле и других; большие концепции естествознания, как, например, дарвинизм, мы легко воспринимаем и поэтому также хорошо с ними знакомы. Технические вопросы также близки нам, так как техника связана с развитием промышленности, находящейся в центре общественного внимания; кроме того, технические приборы в виде радио, телефона, автомобиля и проч. входят в наш каждодневный быт. Но с ведущими концепциями физики, и, может быть, в еще большей степени это относится к математике, дело обстоит значительно слабее.

Если мы спросим любого образованного человека о теории квантов и даже о более частных вопросах, как, например, о фотоэффекте, о спектрах и проч., или если математик спросит, что такое теория групп, учение о вероятности и т. п., то, я думаю, что только в одном случае из десяти можно получить ответ, указывающий на общее знакомство с этими вопросами.

Мое положение затрудняется еще тем, что на сегодняшний день область моего доклада еще далека от жизни и мало известна. Дело в том, что в науке обычно можно выявить два рода изысканий, разницу между которыми позвольте пояснить аналогией. Изучая наши природные богатства, мы можем либо более глубоко развивать эксплуатацию уже открытых геологических пород, либо отыскивать в природе новые залежи. Конечно, оба рода работ чрезвычайно важны для нас, но оцениваем мы их по-разному. Когда мы уже знаем практическую цену разрабатываемой руды, вопрос использования ее уже близко связан с жизнью, тогда оценивать значение нового-изыскания легко. Когда же работа ведет к открытию новых залежей руд, значение которых и ценность для жизни сразу определить трудно, то, очевидно, понимание и оценка значения таких работ значительно затруднены и производится полностью только спустя значительный срок после самого открытия.

Такая же разница в характере работ наблюдается в большинстве областей научных исканий. Возьмем, например, в физике [с.17] такое крупное открытие, как открытие индукции Фарадеем. Теперь мы знаем, что без него невозможны были бы все электромоторы, динамомашины, которые покрывают густой сетью весь земной шар и необходимы для осуществления любого технического процесса. Но после открытия индукции до внедрения ее в жизнь прошло много десятилетий, и Фарадей и большинство его современников умерли без того, чтобы осознать колоссальное практическое значение этого научного достижения.

Подобных примеров можно указать очень много. Например, Герц, открывший радиоволны, отрицал даже возможность их применения для беспроволочной телеграфии, и он был вполне прав со своей точки зрения, потому что в его время не было известно о существовании в природе в верхних слоях атмосферы слоя, отражающего радиоволны и заставляющего их огибать земной шар, благодаря чему и возможна дальняя радиосвязь. Рентген, когда открыл лучи, названные его именем, из всех многочисленных применений этого замечательного излучения никогда не мог предположить, что они окажутся почти единственным пока терапевтическим средством для лечения рака. Поэтому, если научная работа ведет к отысканию в природе нового, неожиданного, мы не должны рассчитывать на исчерпывающую оценку этого явления сразу же. В данный момент мы можем базироваться в своей оценке только на неожиданности явления, т. е. на том, насколько основательно оно противоречит установившимся взглядам на природу вещей.

В физике, как и в других науках, существует ряд областей, которые более или менее полно охвачены теориями, гипотезами и предположениями. Развитие науки заключается в том, что в то время как правильно установленные факты остаются незыблемыми, теории постоянно изменяются, расширяются, совершенствуются и уточняются. В процессе этого развития мы неуклонно приближаемся к истинной картине окружающей нас природы, понимание которой необходимо для того, чтобы все более полно овладевать и управлять этой природой. Наиболее мощные толчки в развитии теории мы наблюдаем тогда, когда удается найти эти неожиданные экспериментальные факты, которые противоречат установившимся взглядам. Если такие противоречия удается довести до большой степени остроты, то теория должна измениться и, следовательно, развиться.

Таким образом, основным двигателем развития физики, как и всякой другой науки, является отыскание этих противоречий. Отсюда мы получаем основу для объективной оценки научного достижения, не имеющего непосредственного применения на практике. Нахождение всякого нового явления в природе надо оценивать тем значительнее, чем больше изменений оно может потребовать от существующих в данное время взглядов или теорий. [с.18]

Естественно, что правильное понимание значения работы наиболее важно установить самому исследователю, так как это направляет его искания. Мы думаем, что, именно руководствуясь этими соображениями, ученый-экспериментатор и должен составлять план своей работы, понимая этот план, конечно, в широком смысле, как общую целеустремленность.

Для того чтобы вы могли составить себе представление о цели и значении результатов наших работ по изучению свойств жидкого гелия, мне необходимо дать хотя бы самую общую картину тех теоретических взглядов, с которыми они связаны.

За последние 50 лет на развитие экспериментальной физики наибольшее влияние оказали два теоретических воззрения. Первое — это атомистический взгляд на вещество. Развитие этого взгляда, в особенности когда оно было объединено с термодинамическими законами, дало ряд блестящих обобщений, наиболее значительное из которых — это, конечно, кинетическая теория материи. Но такое успешное развитие в начале этого века пришло к одному из любопытнейших тупиков. Из развития теоретических обобщений выходило, что равновесие между веществом и излучением невозможно, так как получалось, что вся энергия теплового движения атома должна была непрерывно переходить в лучистую энергию. Это заключение хорошо известно физикам и носит обычно название парадокса Рэлея — Джинса. История развития этого противоречия поучительна, поэтому позвольте на ней остановиться.

В этом случае как-то особо резко проявилось различное отношение ученых к теории. Ведь существует целый ряд физиков, которые склонны благодаря своему внутреннему консерватизму видеть в уже хорошо освоенных ими теориях нечто незыблемое и постоянное. Любопытно отметить, что это отношение к теории распространено гораздо больше на континенте, чем в Англии. Большинство ведущих английских ученых обычно отличается тем, что они главное значение придают эксперименту, рассматривая теорию как вспомогательное орудие. Более ста сорока лет тому назад еще Дэви сказал, что «один хороший эксперимент стоит больше изобретательности ньютоновского ума» *). Эта фраза часто повторяется и по сей день. Любили ее цитировать такие современные ученые, как Дж. Дж. Томсон, Резерфорд. Ее надо рассматривать, конечно, как гиперболу, как лозунг протеста против обожествления теории. Любопытно, что противоречие Рэлея — Джинса получило в Германии название «катастрофы Джинса — Рэлея»— этим эпитетом как бы оттенялся роковой характер для теории этого замечательного научного противоречия.

*) Буквально Дэви сказал: «One good experiment is worth more than the ingenuity of a brain like Newton's» (1799). [с.19]

Мы знаем, результат этой «катастрофы» был чрезвычайно плодотворен для науки. Из нее родилась теория квантов. Ее и надо считать для развития современной физики после атомизма вторым по своей значительности теоретическим воззрением. Если бы всякая катастрофа вела к таким крупным благотворным последствиям, как эта, то мы могли бы только пожелать, чтобы таких «катастроф» было больше. История показывает, что наука по-настоящему двигается вперед, главным образом, подобными «катастрофами» малого и великого порядка.

Как многим из вас, наверное, известно, первым нашел выход из этого тупика Планк. Выход был прост и на первой стадии показался большинству чисто формальным. Несколько преобразовав классическую формулу излучения, введя новую постоянную, Планк показал, что отсутствие равновесия между веществом и излучением можно было устранить. Но понять настоящий глубокий и универсальный смысл этой постоянной, носящей по сей день имя Планка, удалось несколько позже. Физика обязана этим Эйнштейну — он первый понял фундаментальное значение открытия Планка и дал ему более общее физическое толкование, которое носит название закона Эйнштейна. Мне кажется, что по своим практическим последствиям для развития науки эта замечательнейшая работа Эйнштейна сыграла значительно большую роль, чем его знаменитая теория относительности.

От этих работ начала успешно развиваться теория квантов. Идеи теории квантов в самой общей форме можно описать так: происходящие в природе процессы надо рассматривать, не как прежде предполагалось, протекающими непрерывно, но происходит последовательная смена элементарных состояний, в которых только и может устойчиво находиться материя, принимающая участие в процессах в природе.

Мы считаем теперь, что в природе процессы протекают прерывным образом, напоминая этим как бы атомное распределение массы в веществе. Может быть, теперь это нам кажется не так неожиданно, как это было вначале.

В самом деле, не только теоретически, но за последние годы и экспериментально, между энергией и массой поставлен знак равенства — они могут переходить друг в друга. Если же вещество в природе встречается только в дискретных массах, такую же прерывность естественно ожидать и в энергетических процессах. Это, конечно, нельзя рассматривать как доказательство, но во всяком случае это указывает, что такая связь вполне естественна.

Как известно, на первой же своей стадии развития, главным образом, благодаря идеям Бора, квантовая теория была чрезвычайно плодотворной при изучении атома. Строение и свойства атома мы знаем сейчас исключительно полно. Процессы лучеиспускания [с.20] электронной оболочки атома описываются до больших деталей чрезвычайно точно.

Именно, главным образом, разработка физики атома и привела к тому значительному развитию квантовой теории и к тем замечательным ее обобщениям, которые были даны Шредингером, Гейзенбергом и Дираком.

Интересно отметить, что математический аппарат, к которому привело квантовое описание процессов в природе, испытал значительное упрощение. Если бы нам пришлось, например, изучать такую систему, как атом, которая состоит из ядра, вокруг которого движется большое число электронов, теми приемами, какими мы пользуемся в небесной механике, то это привело бы к большим математическим трудностям, чем те, с которыми мы сталкиваемся сейчас.

Но несмотря на все эти успехи, было бы ошибочно думать, что квантовая теория закончена и не будет развиваться дальше. Тут может и должно быть большое развитие, и мы можем ждать даже фундаментальных изменений в наших основных представлениях.

Если мы хотим искать новые противоречия в природе, нам надо интересоваться как раз теми областями физики, в которых эти квантовые воззрения будут подвергаться наиболее основательному испытанию. С этой точки зрения, мне лично кажется, нам надо, главным образом, сосредоточиться на тех областях физики, где квантовые явления наименее изучены и поняты. Экспериментальному материалу изучения свойств атома мы обязаны созданием теории квантов, и он на сегодняшний день в основном исчерпан. Наиболее же интересны следующие две области физики.

Первая — это область атомного ядра. В ядре мы имеем элементарные частицы, расположенные на таких близких расстояниях друг от друга, что можно ожидать, что те законы, которые были выведены для больших расстояний между ними, как это происходит в оболочке атома, могут оказаться полностью себя не оправдавшими. Поэтому есть большая вероятность ожидать, что для ядерной физики теория квантов сегодняшнего дня потребует основательного развития.

Вторая область — это область изучения конденсированного состояния. По своей общности основные идеи квантовой теории, конечно, должны покрывать явления, происходящие в окружающих нас веществах, где атомы и молекулы, взаимодействуя между собой, образуют газы, жидкости и твердые тела. Но оказывается, когда мы изучаем вещество при комнатной температуре, квантовая природа процессов не может обычно выявляться. Тепловое движение атомов как бы стушевывает те особенности в процессах, которые накладываются их квантовой природой, и они неощутимы. Это так [с.21] же, как если бы на качающемся в море корабле мы вздумали изучать на биллиардном столе законы соударений шаров. Очевидно, эта затея осуществима только тогда, когда море спокойно. Так и при изучении квантовой природы явлений течения процессов, происходящих в конденсированном состоянии. Только тогда они себя полностью проявляют, когда тепловое движение атомов достаточно мало. Отсюда очевиден тот большой интерес в физике к изучению явлений в веществе при очень низких температурах — той области явлений при температуре жидкого гелия, о которой я буду рассказывать.

Чтобы более конкретно иллюстрировать эту мысль, позвольте показать вам очень простой опыт (см. рисунок). Хотя это только грубая иллюстрация сказанного, но, я думаю, она позволяет тем из вас, кто не привык к представлениям о тепловом движении, несколько более конкретно его себе представить. В проекционный фонарь вставлена рамка 1, в которой между двумя параллельными стеклами положено несколько десятков шариков от велосипедных подшипников. На рисунке они видны в виде черных кружочков. Эта рамка подвешена на ряде пружинок 2 к другой рамке 3 так, что может колебаться в своей собственной плоскости.

Посредством шатуна 4 и кривошипа 5, сидящих на оси маленького электромотора 6, рамку можно заставить совершать горизонтальные колебания. При этом, как вы видите, шарики начнут бегать между стеклами. Их движение напоминает собой движение атомов при тепловом возбуждении. Чем быстрее мы заставляем колебаться рамку, тем скорее бегают шарики, и тем картина движения ближе соответствует более высокой температуре.

kap-5.jpg

[с.22]

Теперь обратите внимание на некоторую деталь в конструкции рамки. В нижней ее части поставлен ряд перегородок 7, отделяющих от общего пространства шесть ямок. При небольших колебаниях рамки шарики, заключенные в каждой ямке, бегают только в них, и их движение не сказывается на движении шариков в соседних ямках. Это состояние изображено на верхнем рисунке. При быстром движении рамки, т. е. как бы при высокой температуре, мы получаем картину, изображенную на нижнем рисунке. Траектории шариков заполняют при своем движении всю рамку, и присутствие перегородок, образующих ячейки, как бы совсем не сказывается на этом движении.

Предположим теперь, что перед нами стоит обратная задача — обнаружить по движению шариков существование этих ямок, стенки которых были бы сделаны из прозрачного, невидимого материала. Очевидно, что мы могли бы это сделать, только изучая движение при малых колебаниях или покачиваниях рамки, т. е. при низкой температуре.

То же происходит и при изучении квантовых свойств в конденсированном состоянии. Ограничения движения шариков, которые накладываются перегородками рамки в нашей модели, несколько напоминают те, которые квантовая природа явлений накладывает на процессы в конденсированном состоянии атомов. При достаточно низкой температуре квантовая природа взаимодействия между атомами может проявить ряд физических явлений, которые при более высокой температуре не наблюдаются. Отыскание этих явлений и представляет тот исключительный интерес изучения свойств вещества при температурах, близких к абсолютному нулю.

Ожидания открытий новых свойств вещества при низких температурах уже себя оправдали. Еще в самом начале было обнаружено аномальное поведение теплоемкости тел и газов при низких температурах, которое, как показали Дебай и Эйнштейн, может быть объяснено квантовой теорией.

Согласно квантовой теории теплоемкость тел вблизи абсолютного нуля должна приблизиться к нулю; и действительно, например, в области температур, где мы работали, от 0 до 4° К, теплоемкость большинства тел в десятки тысяч раз меньше, чем при комнатной температуре. Интересно отметить, что только благодаря этому свойству вещества и возможно осуществлять те охлаждения, которые необходимы для экспериментальных работ при низких температурах. Дело в том, что жидкий гелий обладает очень малой теплотой испарения: она более чем в 1000 раз меньше, чем теплота испарения такого же объема воды. Подсчеты показывают, что при такой малой теплоте испарения практически невозможно было бы охлаждать тела, если бы они сохраняли ту же теплоемкость, которую они имеют при комнатной температуре. [с.23]

Исследование физических явлений в области самых низких температур было начато Камерлинг-Оннесом, когда после больших трудов, в 1908 г. ему удалось впервые ожижить гелий.

Гелий был наиболее трудно сжижаемым газом. Это объясняется тем, что атомы его чрезвычайно симметричны и испытывают очень малые силы притяжения друг к другу. При нормальном давлении его точка ожижения отстоит только на 4,2° от абсолютного нуля. Подвергая гелий испарению путем понижения давления, можно понизить его температуру до 0,8° от абсолютного нуля. Дальнейшее понижение температуры возможно недавно разработанным методом размагничивания парамагнитных солей. Так удалось подойти до нескольких тысячных градуса к абсолютному нулю. Можно надеяться, что в дальнейшем к абсолютному нулю можно будет подойти еще ближе, но достигнуть его принципиально невозможно.

Из ряда исключительно интересных физических явлений, наблюдаемых при низких температурах, пожалуй, самое интересное — сверхпроводимость, явление, о котором вы, несомненно, слыхали. Оказывается, при некоторой очень низкой температуре некоторые металлы полностью теряют свое электрическое сопротивление. Ток, возбужденный в металле, может циркулировать сколь угодно долго, если металл остается при необходимо низкой температуре.

Это явление движения без трения электричества в проводах, как показывает существующая теория, противоречит нашим обычным взглядам на движение электронов (носителей электричества в металле) через кристаллическую решетку, так как это движение нормально должно происходить с потерей энергии.

Несмотря на ряд очень интересных попыток создать теорию этого явления, до сих пор еще этого никому не удавалось. Среди физиков существует единодушное мнение, что это явление обязано своим существованием квантовой природе явлений при низких температурах, но как оно ею обусловлено, до сих пор остается необъясненным *).

Из других явлений при низкой температуре, не имеющих подобия при обычных температурах и также, по-видимому, связанных с их квантовой природой, наиболее интересными оказываются свойства самого гелия, о которых я предполагаю говорить более подробно.

Жидкий гелий имеет очень малый удельный вес: примерно в 7 раз меньше воды. Он чрезвычайно прозрачен и, например, по сравнению с водой, трудно видим.

Изучение свойств жидкого гелия привело к открытию целого ряда интересных явлений. Еще Камерлинг-Оннес обнаружил, что

*) Квантовая теория сверхпроводимости была построена лишь в 1957 г. Дж. Бардином, Л. Купером и Дж. Шрифером. [с.24]

гелий имеет два состояния: первое состояние — это нормальное, называемое гелий-I. Оно существует до температуры 2,19° К, ниже его модификация меняется. Оставаясь жидким, он переходит в состояние, называемое гелий-II. В этой модификации он остается до самых низких температур, пока достигнутых.

При внимательном рассмотрении гелий-I представляет кипящую жидкость, потому что даже свет, падающий на него, уже заставляет его кипеть. Чтобы защитить его от окружающего тепла, сосуд с жидким гелием окружают двумя рядами вакуумных оболочек, между которыми налит жидкий воздух. Без этих предосторожностей жидкий гелий испарился бы в несколько десятков минут.

Второе состояние гелия резко отличается от первого. Гелий-II не кипит, и на вид его свободная поверхность образует совершенно неподвижную плоскость. Гелий-II обладает рядом совершенно исключительных физических свойств. Из них, пожалуй, самым замечательным свойством является его чрезвычайно большая теплопроводность, обнаруженная Кеезомом и его дочерью. Это явление было обнаружено, когда теплопроводность гелия-II мерилась в тонких трубках (капиллярах). Наиболее теплопроводными веществами, которые нам известны при комнатной температуре, являются металлы, из них наиболее теплопроводны медь и серебро. Многие из вас, наверное, испытали на опыте, что если нагревать конец медного стержня и держать его за другой конец в руке, то легко можно обжечь себе руку. Так вот, гелий в капиллярах оказался теплопроводнее, чем медь, больше, чем в миллион раз. Совершенно естественно, что Кеезом назвал это свойство по аналогии со сверхпроводимостью металлов — сверхтеплопроводностью.

Опытами, проводившимися в Канаде, было также показано, что у жидкого гелия-II очень малая вязкость — она в несколько раз меньше, чем у гелия-I.

Вязкость — это свойство жидкости, определяющее ее текучесть. Если через одну и ту же трубку под одним и тем же напором мы будем пропускать разные жидкости, то легко убедимся, что одни из них будут протекать легче, другие — труднее. Чем хуже протекает жидкость, чем меньше ее текучесть, тем больше в ней вязкость. Следовательно, вязкость есть как бы мерило внутреннего трения при течении. Из опыта мы, например, находим, что у масла большая вязкость, у смолы еще больше, а у воды меньшая вязкость. Если поставить точный эксперимент, то мы найдем, что у газа есть вязкость, хотя она мала. Оказалось, что у жидкого гелия она примерно в 1000 раз меньше, чем вязкость воды, и при переходе гелия-I в гелий-II даже было наблюдено некоторое уменьшение этой вязкости. [с.25]

Это явление нас очень заинтересовало. Как нетрудно показать, в этих свойствах жидкого гелия можно найти противоречие с нашими обычными представлениями о механизме вязкости и теплопроводности.

В самом деле, как себе представить механизм теплопроводности? Мы считаем, что тепло есть движение атомов в веществе. Когда одна часть тела более нагрета, чем другая, атомы в ней приобретают более энергичное колебательное движение, чем в другой. Благодаря силам взаимодействия более энергичное движение атомов нагретой части тела передается менее нагретой. Неравномерность в энергии колебаний как бы стремится выравняться по всему телу, и это влечет за собой то, что тепло распространяется по всему телу. Значит, теплопроводность надо рассматривать как способность атомов передавать свои колебания друг другу, и чем больше это свойство передачи, тем больше значение для теплопроводности данного вещества.

Теперь попытаемся представить себе механизм, обусловливающий вязкость. При течении, например, в трубочке, слой жидкости, прилегающий к стенке, неподвижен, следующий слой уже движется с некоторой скоростью, над ним движется другой слой с несколько большей скоростью и т. д. Между этими слоями существует скольжение, которое происходит с трением. Это трение вызывается тем, что атомы одного слоя в своем движении отстают от атомов следующего слоя и благодаря тем же силам взаимодействия мешают движению. В результате получается потеря энергии, которая и обусловливает вязкость жидкости. Из такой картины следует, что вязкость должна быть тем больше, чем больше движение атомов одного слоя влияет на движение атомов другого слоя, т. е. чем легче в теле распространяется тепло.

Поэтому при увеличении в веществе его теплопроводности естественно ждать также и увеличения его вязкости, а не наоборот, как это происходит в гелии. Спрашивается, почему же при таком колоссальном увеличении теплопроводности гелия-II вязкость его уменьшается?

Чтобы разрешить это противоречие, мы выдвинули предположение, что большая теплопроводность, которую наблюдал Кеезом, является только кажущейся. В самом деле, известно, что существуют два механизма теплопередачи. Один — это теплопередача от атома к атому, как мы описывали и какая наблюдается в твердом теле, а другой же механизм теплопередачи — это конвекция. Положим, вы будете держать руку над горячим источником, например радиатором, — вы сразу почувствуете тепло, так как поток нагретого воздуха будет переносить тепло к вашей руке. Такой перенос тепла вместе с движущимся потоком вещества и называется конвекцией. Если же руку поместить под радиатором, то никакого [с.26] тепла не почувствуется, так как поток теплого воздуха идет кверху, а обычная теплопередача воздуха очень мала. В такой плохо-теплопроводной среде, как воздух, обычная теплопередача только и происходит благодаря конвекционному переносу. Так и у гелия с его большой текучестью естественно предположить, что будет легко происходить конвекционная теплопередача, и таким механизмом переноса тепла и могла бы объясняться большая теплопроводность, которую наблюдал Кеезом.

Подсчеты сразу же показали, что для того, чтобы объяснить большую теплопередачу конвекционными потоками, вязкость гелия-II должна быть значительно меньше той, которая была измерена учеными в Канаде.

Но тут надо отметить, что малая вязкость — величина, довольно трудно поддающаяся измерению. Теория показывает, что истинное значение вязкости может быть как бы затушевано присутствием в жидкости так называемого турбулентного движения, т. е. вместо того, чтобы иметь при измерениях спокойное течение, на самом деле на него накладываются движения от вихрей, которые, как можно показать, исказят результаты измерений, так что полученная величина может оказаться во много раз больше истинной.

Вопрос этот чисто экспериментальный, я не буду его подробно касаться, так как он требует довольно детального описания техники измерений *). Скажу только, что мы под этим углом зрения снова произвели измерения вязкости гелия. Нам удалось построить вискозиметр (прибор для измерения вязкости), который имел очень узкую щель, всего в полмикрона (тысячная доля миллиметра), через которую протекал гелий. Поставив опыт таким образом, можно было в значительной мере избежать вредного влияния вихрей, и тогда удалось показать, что наблюдаемая вязкость гелия-II была по крайней мере в тысячу раз меньше, чем ее определяли прежде.

Можно было также показать, что то значение для вязкости, которое мы получили, является только возможным верхним пределом: на самом деле истинное значение вязкости могло быть сколь угодно меньше, т. е. даже в нашей узкой щели мы не могли доказать, что полностью удалось исключить вредное влияние турбулентного движения. Эта работа была нами опубликована 3 года тому назад, и она вызвала целый ряд обсуждений и критику.

Первым делом начали искать возможные ошибки в методике этой работы. И тут поучительно рассказать об одном возражении, выдвинутом против нас.

*) Подробно экспериментальные работы изложены в следующих работах: ДАН СССР 18, 21 (1938); ЖЭТФ 11, № 1, 1 (1941); 11, № 6, 581 (1941). [с.27]

kap-6.jpg

Эта критика базировалась на другом, чрезвычайно любопытном свойстве гелия-II — ползти в пленках по стенкам сосуда. Если уровень гелия-II в пробирке, изображенной на рисунке, выше уровня окружающего гелия, то оказывается, что уровни довольно быстро выравниваются. Это явление изучено, и показано, что гелий легко переползает по поверхности в виде очень тонкой пленки. Наши опыты критиковали тем, что в своем вискозиметре я мерил не вытекание гелия из сосуда через щель, что на самом деле вытекание происходило путем переползания, а потому полученные мною данные для вязкости занижены. На самом деле при экспериментировании я учитывал возможность ошибки, вызванной этим явлением. Но интересно отметить, что эта критика, данная учеными в Америке и в Канаде, упустила из виду, что гелий может переползать в тонкой пленке, толщиной, по измерениям Кикоина и Лазарева, меньше сотой доли микрона, и только тогда, когда его вязкость в миллион раз меньше, чем тот предел, который был уже дан нами. Получалось так, что критика большой текучести гелия основывалась на явлении, для объяснения которого требовалась еще большая текучесть.

Мы предложили принять, что гелий-II — идеально текучая жидкость, и по аналогии со сверхпроводимостью назвали это свойство сверхтекучестью. [с.28]

Казалось бы, что теперь появилась возможность объяснить аномальную теплопередачу гелия-II его сверхтекучестью. Но когда экспериментальные данные были подвергнуты более тщательной количественной обработке, то появились новые затруднения, на которых я и хочу сейчас остановиться более подробно.

Вычисления показали, что для объяснения тех значений для теплопроводности, которые наблюдал Кеезом, скорость конвекции нужно было принять равной примерно 50 м/сек. Это уже большая скорость, и потому я хотел ее измерить более точно.

Для этого был поставлен ряд опытов, в которых была разработана методика более чувствительного измерения больших значений теплопроводности гелия-II, чем это делалось Кеезом. Нам удалось улучшить технику измерения разниц температур, доведя ее до измерения нескольких миллионных градуса. Описание этой техники отвлекло бы нас в сторону, поэтому я о ней говорить не буду.

Таким образом, нам удалось наблюдать теплопередачу, которая была по крайней мере еще в 20 раз больше, чем наблюденная Кеезом. Следовательно, конвекционная скорость, необходимая для объяснения этой теплопроводности, должна составлять уже не 50, а порядка 1000 м/сек. Очевидно, что существование таких скоростей в конвекционных потоках допустить нельзя. Немыслимо предположить, что гелий в капилляре двигается со скоростью, которая превышает скорость полета пули. Можно было показать, что отсутствуют источники энергии для таких мощных конвекционных потоков.

Полученные нами результаты, оказывается, вели к еще более фундаментальным затруднениям, чем это кажется на первый взгляд, если механизм теплопередачи путем конвекции отпадал. Если мы вспомним тот обычный механизм теплопроводности, который мы описывали раньше как передачу теплового движения от одних атомов к другим, можно показать, что и в этом случае мы наталкиваемся на основное противоречие.

Вернемся на время к этой картине теплопроводности. Положим, у нас имеется слой атомов, который внезапно нагрет, и атомы в нем колеблются более интенсивно, чем в соседних. Эти колебания будут передаваться от одного слоя к другому, и, таким образом, мы получим тепловую волну, распространяющуюся по телу от нагретого места. Показано, что распространение подобной тепловой волны не может быть скорее распространения в теле упругих колебаний, т. е. звука. Скорость звука в гелии-II изучена и найдена равной 230 м/сек, в то время как скорости, которые мы получили от тепловых измерений, как оказалось, в несколько раз превосходят ее, что противоречит условиям такого способа теплопередачи. [с.29]

На поиски выхода из этих противоречий мы затратили около года.

Как же дальше искать механизм этой теплопередачи, не имея никакой руководящей идеи? Ведь наши результаты в основном противоречили всем известным теоретическим представлениям?

Тут пришлось идти ощупью, пробовать самые разнообразные физические факторы, под влиянием которых, может быть, будет меняться теплопроводность. Мы испробовали влияние на теплопередачу в гелии-II давления, силы тяжести, времени и т. д. Результаты получились отрицательные — теплопроводность не изменялась, оставаясь такой же большой.

Наконец, одно совершенно случайное наблюдение дало нам сразу новое направление в работе. Оказалось, что пульсации давления, совершенно случайно передаваемые из лабораторной сети гелиевого трубопровода на гелий в капилляре, сильно изменяли его теплопроводность. Хотя пульсации были очень малы, но они уменьшали теплопроводность гелия-II в десятки раз. Возникает вопрос — как эти небольшие пульсации давления могут так сильно влиять на теплопроводность гелия?

Наиболее естественное объяснение было следующее. Известно, что жидкий гелий-II — сравнительно легко сжимаемая жидкость — примерно в сто раз легче, чем вода. Благодаря этому свойству пульсации давления, сжимая жидкость, могли вызывать потоки гелия в капилляре, где изучалась его теплопроводность. Мы и предположили, что эти потоки влияют на теплопроводность. Чтобы проверить правильность этого объяснения, надо было поставить опыты, где измерялась теплопроводность гелия, когда он протекает через капилляр. Когда это было сделано, то оказалось, что действительно в гелии-II, текущем в капилляре, теплопроводность уменьшена в 100 и даже в 1000 раз. Эти эксперименты также обнаружили, что пока через гелий в капилляре течет тепло, то он легко протекает. Этим была установлена связь между потоками жидкого гелия и его способностью переносить тепло, и это явилось ключом к дальнейшим исследованиям.

Действительно, если потоки гелия влияют на теплопроводность, то возможно, что и передача тепла вызывает потоки. Сразу возник вопрос — как экспериментально обнаружить потоки гелия в тонком капилляре, диаметр которого был только 0,5 мм? Это задача трудная, но можно было ожидать, что эти потоки могли прорываться наружу у свободного конца капилляра, и там их можно было обнаружить. Для этой цели был построен приборчик, который схематически изображен на рисунке на стр. 31.

Стеклянная капиллярная трубочка 1 помещалась горизонтально. К ее концу, загнутому кверху, припаивалась стеклянная бульбочка 2, в которой помещался нагреватель. Против свободного [с.30] конца капилляра на легком коромысле 3 подвешивалось крылышко 4 в форме диска. Коромысло подвешивалось на длинной стеклянной палочке 5 посредством тонкой кварцевой нити. Коромысло и бульбочка с капилляром помещались в сосуде Дьюара значительно ниже уровня гелия-II. Если из конца капилляра при нагревании гелия в бульбочке вырывалась жидкость, то она, ударяясь о крылышко, могла давить на него, и крылышко должно было отклоняться.

Сила давления гелия могла быть измерена по закручиванию кварцевой нити, которое определяли по смещению зайчика от зеркала 6, прикрепленного к стеклянной палочке 5.

Опыт показал, что даже при малейшем нагревании гелия в бульбочке действительно из конца капилляра вырывается жидкость, которая производит легко обнаруживаемое давление на крылышко.

Характер самого потока гелия из отверстия капилляра можно было установить посредством следующего простого опыта. Диск крылышка 4 был сделан малого диаметра, немного больше отверстия самого капилляра. Опыт показал, что, помещая этот диск почти рядом с отверстиями капилляра, или на большем расстоянии, раз в 15 превышающем диаметр отверстия капилляра, можно было получить одно и то же давление. Только когда диск находился на большом расстоянии, он должен был [с.31]

kap-7.jpg

точно находиться на продолжении линии капилляра; при небольшом передвижении его в сторону гелий переставал производить давление. Этот опыт показывает, что поток гелия из капилляра вырывался в форме хорошо направленной струи. Подробного количественного изучения этого явления, его зависимости от нагрузки мы здесь давать не будем; укажем только, что, измеряя величину давления струи гелия на крылышко, можно было установить скорость вытекания гелия (она достигла значения 5—6 см/сек).

Если гелий непрерывно вытекает из капилляра в форме струи, то возникает вопрос, как пополняется гелий, вытекающий из бульбочки, каким путем он в нее возвращается? Ведь каким-то образом он должен попадать обратно в нее, так как количество жидкого гелия в бульбочке не убывало. Единственным путем, очевидно, является тот же капилляр, и казалось бы, что если мы поставим крылышко достаточно близко от наружного отверстия, то входящий гелий тоже должен был бы давить на крылышко. Но опыт показал, что если мы приближали крылышко насколько только возможно ближе к отверстию капилляра, то струя давила на него с такой же силой, как и на большом расстоянии. Значит, гелий заползал в капилляр в очень тонком слое, окружающем отверстие.

Чтобы более точно изучить путь вползания гелия, мы ставили опыты, основанные на следующих рассуждениях. Вырывающаяся струя гелия должна оказывать реакцию на капилляр, т. е. вызывать силу в направлении, обратном движению струи. Как можно показать, эта сила равняется силе, с которой струя давит на наше крылышко. Втекающий в капилляр жидкий гелий тоже может оказывать на него силу. Обнаружив и измерив ее, мы можем выяснить более точно, каким путем гелий входит через капилляр в бульбочку. Чтобы обнаружить эту силу, был построен приборчик, изображенный на рисунке на стр. 33.

Была сделана очень маленькая бульбочка с капилляром 1. Весила она не более 1/4 грамма, подвешивалась она вместо крылышка, которое было изображено на рисунке на стр. 31, на том же коромысле 2 к стеклянной палочке 6. Теперь только ее приходилось уравновешивать более тяжелым противовесом в форме диска 3. Нагревание гелия в бульбочке производилось током, который подводился по проводникам в форме очень тоненьких серебряных полосок 5 и 4.

Опыты с такой подвесной бульбочкой показали, что реакция струи существует и она имеет такую же величину и характер, что и давление струи на диск. Чтобы это показать более точно, диск 7 прикреплялся к самой бульбочке, и тогда давление гелия на диск должно было уравнивать силу реакции струи на бульбочку, и остаточная сила должна была быть отнесена за счет [с.32]

kap-8.jpg

втекающего гелия. На опыте такой силы почти не было заметно, и потому мы пришли к выводу, что гелий втекает таким путем, что не оказывает давления на бульбочку. Единственная возможность вхождения гелия без оказания реакции — это вползание его очень тонким слоем по поверхности.

Это явление настолько интересно и ярко, что его можно будет вам показать на упрощенном приборе, специально построенном для демонстрации. Этот прибор изображен на рисунке. Мы назвали его «паучком». Он состоит из двух стеклянных колпачков 2, запаянных внизу, к которым прикреплено 6 капилляров в виде ножек паука. Стеклянный колпачок покоится на очень острой игле 1 и, таким образом, может свободно вращаться. Конечно, паучок целиком погружен в жидкий гелий-II. Если посредством пучка света 3 нагревать гелий, находящийся в сосудике 2, то из каждой ножки он начнет вырываться струей, сила реакции которой, как вы увидите, заставляет этот паучок вращаться.

Если теперь, опуская петлю 5, надеть на наш паучок два очень легких колечка 4, к которым на тоненьких проволочках прикреп-

kap-9.jpg

[с.34]

лены по числу капилляров 6 дисков так, что каждый из дисков прикроет на расстоянии 1—2 мм отверстие каждого капилляра, то мы увидим, что и таком состоянии наш паучок, когда мы будем подогревать гелий пучком света, не будет уже вращаться. Фотография этого приборчика показана на рисунке справа.

Из этих опытов мы получили картину движения жидкого гелия в капилляре, производимого потоком тепла. Схема этого движения представлена на рисунке на стр. 36. В бульбочке 1 происходит нагревание гелия, в капилляре происходит поток, и он вырывается наружу в виде струи 2. Входящий гелий ползет по стенке капилляра в обратном направлении в виде тонкой поверхностной пленки 3, а в бульбочке происходит переход гелия с поверхности опять в свободный гелий. Таким образом, мы имеем тут явление ползания гелия по поверхности, очень похожее на то, о котором мы уже говорили вначале и которое объясняет выравнивание уровней гелия из сосудика, изображенного на рисунке на стр. 28. Нужно отметить, что в обоих случаях такое движение гелия возможно только, если жидкий гелий-II при своем течении ведет себя как жидкость, не обладающая вязкостью.

Теперь, имея картину движения гелия в капилляре, вызванную тепловым потоком и установленную, как мы видели,

kap-10.jpg kap-11.jpg

[с.35]

kap-12.jpg

чисто экспериментально, мы могли приступить к выводам нашего исследования, ведущим к объяснению процесса колоссальной теплопроводности.

Мы имеем основания предположить, что гелий, в тонкой пленке двигающийся по поверхности, отличается по своему физическому состоянию от того, который течет в обратном направлении в центральной части капилляра. Благодаря молекулярным силам от стенок капилляра мы принимаем, что он находится в несколько другом энергетическом состоянии. Говоря языком термодинамики, у него другая тепловая функция, чем у свободного гелия.

Оказывается, этого предположения, по-видимому, вполне достаточно, чтобы объяснить большую теплопередачу гелия, которая наблюдалась в капилляре. Наблюдаемая при опыте картина такова: когда гелий по внутренней поверхности капилляра втекает в бульбочку и, покидая поверхность, переходит в свободное состояние, он поглощает тепло. Этот процесс и создает впечатление колоссальной теплопроводности. Поясним это примером.

Если мы хотим произвести охлаждение и будем пользоваться для этого струей холодной воды при 0° С, либо используем лед при той же температуре, то мы увидим, что во втором случае за счет скрытой теплоты таяния происходит более энергичное охлаждение, чем при пользовании просто водой. Охлаждение [с.36] в нагревающейся бульбочке и напоминает нам охлаждение тающим льдом. Гелий, попадающий сюда по поверхности, оставляя стенки, переходит в другое энергетическое состояние, и при этом он поглощает тепло, которое создается нагревателем. Основываясь на такой картине, можно показать, что теплопередача становится как количественно, так и качественно вполне объяснимой, и никакой сверхтеплопроводности в гелии-II не существует *).

Дальнейшая проверка предложенной нами теплопередачи в гелии-II в капилляре была произведена измерением его теплопроводности не в трубочке, а в свободном объеме. Таким путем мы мерили теплопроводность в условиях, когда исключалась возможность переноса тепла движением пленки. В этих опытах, например, бралась стеклянная трубка с нагревателем и термометром внутри. Она свободно подвешивалась в гелии-II на очень тонких проводниках. Пленки гелия-II от холодных частей к более теплым могли, очевидно, проползти только по этим проводникам, но так как эти проводники имеют очень малую поверхность, то только очень малая часть тепла могла быть перенесена движением пленки по их поверхности. Поэтому главная часть тепла должна была проходить через массу самого жидкого гелия. Меряя в этих опытах теплопроводность свободного гелия, как и следовало ожидать согласно нашей картине, мы получаем для нее нормальное значение, т. е. она оказывается не больше, чем у гелия-I, т. е. примерно в 100000 раз меньше, чем у меди**). На этом я позволю себе закончить описание наших опытов с жидким гелием.

Мне хочется еще раз оговорить, что я их описал очень схематично, рассказывая вам только о том, что могло проиллюстрировать ход развития нашей мысли. Но мне кажется, что даже из этого, весьма общего, описания можно вынести некоторую картину развития изучения этого интересного вопроса современной физики. Вы видели, как замеченное противоречие одновременного существования в жидком гелии большой теплопроводности и малой вяз-

*) Выдвинутое на основе описанных экспериментов представление о течении гелия в одном физическом состоянии внутри жидкости навстречу тонкой пленке жидкости, находящейся в другом физическом состоянии, послужило основанием для построения Л. Д. Ландау квантовой теории сверхтекучести. Согласно этой теории жидкий гелий представляет собой как бы смесь двух жидкостей (двух компонент), находящихся в различных квантовых состояниях. Квантовая теория позволила объяснить, что наблюдаемые на опыте противотоки есть встречное движение во всем объеме жидкости этих двух компонент.

**) Наши дальнейшие исследования теплопередачи от нагретого тела в свободный гелий-II показали, что все теплосопротивление в этом случае сосредоточено в чрезвычайно тонком пристенном слое. В этом слое возникает скачок температуры, величина которого растет с понижением температуры обратно пропорционально третьей степени температуры. Это явление сильно затрудняет проведение физических исследований при температурах много ниже 1° К. [с.37]

кости привело к опытам, которые обнаружили, что эта вязкость не только мала, но практически неощутима, и мы предположили, что гелий-II «сверхтекуч», а его теплопроводность — конвекционная. Такая картина опять завела в тупик, так как она все же недостаточна, чтобы объяснить большую теплопроводность гелия-II. Чтобы выйти из тупика, нужно было обнаружить движение гелия в капилляре. Рядом экспериментов, на описании которых я остановился более подробно, это удалось сделать. На основании полученной картины движения, чтобы объяснить большую теплопроводность гелия, мы выдвинули предположение о разности тепловых функций гелия в тонких слоях и в свободном состоянии. Гипотеза оказалась плодотворной, и на основании ее удалось предсказать, что теплопроводность гелия в свободном состоянии при отсутствии поверхностных явлений не обнаруживает аномалий.

Но я ввел бы вас в заблуждение, если бы вы заключили из всего сказанного, что проблемы жидкого гелия полностью решены и вопрос исчерпан. Дальнейший анализ вскрывает еще много противоречий и неясностей в этих проблемах, и впереди еще много интересной работы. Подробный разбор этих вопросов завел бы нас очень далеко, но я укажу хотя бы на некоторые из них.

Пограничные слои, играющие, как мы видели, такую важную роль в явлениях жидкого гелия-II, выдвигают ряд проблем для исследования. Например, далеко не ясен вопрос о механизме течения гелия в тонких пленках по поверхности и о возможных скоростях этого течения. Поверхностный слой жидкого гелия-II, участвующий в противотоке, казалось бы, следовало считать, по ряду общих теоретических соображений, очень тонким, но тогда оказывается, что скорости этого течения были бы очень велики: порядка 200 м/сек. Более подробный анализ показывает, что нет никаких физических законов, препятствующих принципиальному существованию таких больших скоростей в тонкой пленке, но в то же время признать их существование мы сможем только после того, как подтвердим наличие этой скорости экспериментально.

Неясен еще такой вопрос: есть ли «сверхтекучесть» только свойство гелия-II в его поверхностных слоях или это есть свойство всей массы гелия. Анализ экспериментальных данных не дает до сих пор однозначный ответ на этот вопрос, а, наоборот, ведет к ряду интересных противоречий, подлежащих опытному изучению.

Можно указать целый ряд еще не решенных вопросов.

Но уже сейчас интересно обсудить, какое возможное значение для развития современной теоретической физики могут иметь уже полученные данные. Как мы уже указывали, в сверхтекучести гелия-II мы имеем явление, чрезвычайно похожее на сверхпроводимость. В обоих случаях при температуре вблизи абсолютного нуля, где можно ждать проявления квантовой природы явлений, процесс [с.38] течения как электричества, так и самой материи начинает происходить без потерь. Было бы неожиданно, если бы оба эти явления не определялись одной теорией, пока еще непонятной особой стороной квантовых процессов в конденсированном состоянии.

В сверхпроводимости мы имеем случай, когда носители электричества — электроны — могут без трения течь через кристаллическую решетку. В процессе сверхтекучести мы имеем атомы, которые могут организованно двигаться относительно друг друга тоже без трения. Теоретики ищут те квантовые соотношения, которые объясняют возможность такого движения без трения, и естественно думать, что им удастся более легко решить задачу, изучая взаимодействие электронов с атомами, образующими кристаллическую решетку металла.

На этом можно было бы и кончить изложение наших работ, если бы совсем неожиданно для меня не была предложена одна идея практического применения большой текучести жидкого гелия. Я хочу вам рассказать о ней не потому, что я уверен в ее практическом осуществлении, а только чтобы проиллюстрировать, что всякое обнаруженное в природе явление неизбежно открывает новые возможности, которые так или иначе всегда будут использованы в нашей жизни. Эти применения могут быть совсем неожиданными и относятся к областям, от которых сам исследователь очень далек и о которых он не осведомлен и не мог думать, когда вел свои работы. Смелая идея применения жидкого гелия была мне высказана проф. Л. Г. Лойцянским. Его идея пока очень далека от осуществления и может вызвать еще целый ряд возражений, но столь интересна, что о ней следует рассказать.

Дело касается испытания крыльев и фюзеляжа аэропланов на обтекаемость. Сейчас инженерам приходится пользоваться очень большими и дорогими аэродинамическими трубами, где аэропланы испытывают в натуральную величину. Как известно, нельзя применять уменьшенные модели аэропланов, ибо теория подобия, на которой основывается экспериментирование на моделях, здесь полностью не применима. При уменьшении масштабов в аэродинамических трубах требуется такое же уменьшение так называемой кинематической вязкости окружающей среды. Эта кинематическая вязкость есть частное от деления вязкости на плотность среды. Чтобы уменьшить ее, пытались поднимать давление воздуха в аэродинамических трубах, так как при этом плотность воздуха увеличивалась, вязкость оставалась неизменной, и, следовательно, кинематическая вязкость уменьшалась. Это оказалось очень дорого и сложно.

Интересно, что кинематическая вязкость почти для всех текучих сред оказывается больше или мало отличается от кинематической вязкости воздуха. Исключение одно — это жидкий гелий. [с.39] Предложение проф. Л. Г. Лойцянского и сводится к тому, чтобы изучать аэродинамические свойства моделей самолетов в потоке жидкого гелия. Теоретически идея правильная, экспериментально смелая, и возможно, что ей принадлежит будущее. Во всяком случае до ее практического осуществления надо еще много поработать как над свойствами самого жидкого гелия, так и над техникой осуществления этого эксперимента.

В данный момент для нас интересна неожиданность этой возможности применения нового явления.

Я не сомневаюсь, что в дальнейшем их будет найдено еще много, столь же неожиданных и не менее многообещающих. Но не надо ждать, что их будет давать сам исследователь. Эти идеи должны быть и будут появляться как результат сотрудничества и интереса к взаимной работе людей с творческим воображением, работающих над развитием самых разнообразных отраслей нашей жизни. Поднять интерес к науке и сделать ее достоянием, более доступным для большего круга работников нашей страны, — необходимое условие для наиболее быстрого использования новых завоеваний науки. Наука для своего внедрения тоже требует пропаганды. У нас в стране с этой задачей лучше всего должна была бы справиться Академия наук.

КИСЛОРОД

Лекция, прочитанная в Центральной школе парторганизаторов ЦК ВКП(б) 25 мая 1944 г.

Я думаю, что вы оцените ту трудность, которая стояла передо мной при выборе темы моего доклада. Я знаю, что вас учат общественным наукам, экономике, истории. Но вас не учат технике и ее основе — физике. Вполне понятно, что вы даже подзабыли ту физику, которую учили в средней школе. Поэтому я выбрал для своей сегодняшней лекции не научную тему, а более общую — о кислороде, и предполагаю вам рассказать о том, как в лаборатории у ученых родилась одна интересная научная проблема и как постепенно из небольших лабораторных опытов она перешла в технику и промышленность и как, наконец, начала оказывать большое влияние на экономику всего народного хозяйства. На этом примере мне хотелось наглядно показать, как наука влияет на рост культуры страны.

Иллюстрацией аналогичного процесса может служить следующий уже хорошо известный пример, когда маленькое, ничтожное, на первый взгляд, наблюдение ученого привело к большим практическим [с.40] последствиям. Не так уж давно, не многим больше столетия прошло с того дня, когда итальянский врач Гальвани, подвешивая к металлическим перилам своего балкона лапки лягушки, над которой он экспериментировал, заметил, как мышцы лягушачьей лапки пришли в судорожное движение без всякого постороннего воздействия электризации, но просто от прикосновения к мышцам двух разных металлов.

Подобное сокращение, но под действием электрических разрядов было уже известно и неоднократно наблюдалось. Более проницательный, чем Гальвани, Вольта первым понял, что итальянский медик открыл новый источник электричества — электрохимический элемент. Правильно истолковав наблюдения Гальвани и продолжая его работы, Вольта в 1799 г. создал свой знаменитый «вольтов столб», состоящий из ряда медных и цинковых дисков, разделенных пропитанными кислотой кусками фланели, и дающий уже значительную электродвижущую силу. Таким образом был создан источник постоянного электрического тока, что дало возможность изучать его физические свойства.

Рядом ученых только за один XIX в. были открыты все основные электромагнитные явления, вызываемые электрическим током, и создана их теория. Как вы, вероятно, знаете, это открыло путь к созданию мощных источников электрической энергии и ее широкому использованию в технике и народном хозяйстве.

Сейчас для всех ясно, что мы не можем мыслить нашу жизнь без использования электрического тока. С исторической точки зрения современная электротехника молода, она в основном развивалась за одно столетие, при ее зарождении присутствовали наши деды. История использования кислорода, о которой я буду рассказывать, происходит на наших глазах и еще не завершена. Здесь тоже наглядно видно, как научное открытие, родившееся в лаборатории, начинает оказывать все возрастающее влияние в технике и в народном хозяйстве. Я выбрал эту проблему как тему для доклада, так как сам активно принимал участие во внедрении кислорода в промышленность.

Газ кислород как составная часть воздуха был открыт давно. Во второй половине XVIII в. почти одновременно в Швеции — Шееле, в Англии — Пристли и во Франции — Лавуазье установили, что кислород поддерживает горение, и назвали его первоначально «огненным» или «жизненным» воздухом. Впоследствии Лавуазье изменил его название на «кислород» в знак того, что он образует кислоты со многими горючими веществами (фосфорную кислоту с фосфором, углекислоту с углем и т. д.). Вскоре было выяснена в больших подробностях значение кислорода для жизни человека и стало известно, что когда человек заболевает и ему трудно дышать, ему помогает кислород. [с.41]

Во времена Лавуазье химики добывали кислород из перекиси марганца, которая находится в природе. Несколько позднее кислород добывали из содержащих его в большом количестве кислот и солей. Пристли и Шееле получали кислород для лечебных целей из хлорновато-калиевой соли, которой было присвоено название по имени открывшего ее французского химика Бертолле — «бертоллетова соль».

Эта соль, сходная по физическим свойствам с обыкновенной поваренной солью и имеющая вид бесцветных прозрачных пластин, при нагревании плавится и, расплавившись, начинает разлагаться, выделяя кислород. Сто граммов бертоллетовой соли дают около 29 литров кислорода. Таким образом полученным кислородом наполняют подушки, с помощью которых поддерживают дыхание тяжелобольных. Это было давно. Получаемый с трудом и в небольших количествах кислород не находил широкого применения. Развитие физики показало, что к получению кислорода следует подойти другим путем.

Самым обильным источником кислорода, несомненно, должен быть воздух, но долгое время он был недоступным человечеству, пока ученые не нашли способ повысить его естественную концентрацию (21%). История того, как это произошло, началась примерно 70 лет тому назад, когда швейцарским физиком Пикте и одновременно с ним французским физиком Кальете удалось ожижить воздух. К тому времени многие газы уже удавалось ожижать, но были и такие, которые еще Фарадей назвал «постоянными», потому что ошибочно считалось, что их вообще нельзя перевести в жидкое состояние. К числу этих «постоянных» газов относился и воздух, поскольку даже при сильном сжатии он не ожижался.

Тогда было выяснено, что для ожижения газа нужно не только достаточно высокое давление, но и достаточно низкая температура — названная критической. Как мы теперь знаем, эта температура для воздуха —141° С при давлении в 32 атмосферы. После ряда попыток найти метод для получения таких низких температур это удалось, наконец, Пикте. В восьмидесятых годах прошлого века, он получил жидкий воздух и наполнил им небольшой сосуд. Это считалось тогда большим научным открытием; Пикте был избран почетным членом разных научных обществ, получил медаль и пр.

Основной помехой при исследованиях было то, что жидкий воздух в то время никак не удавалось сохранить в жидком состоянии. Как только его наливали в сосуд, он быстро испарялся. Никoмy и в голову не приходило, что эта жидкость, которую нельзя было сохранять, может иметь промышленное значение. Жидкий воздух оставался курьезной новинкой, получение которой было доступно [с.42] только одной — двум хорошо оборудованным лабораториям в мире. Так продолжалось лет двадцать, пока не было сделано другое открытие, которое сразу изменило положение. Английский ученый Дьюар на основании теоретических соображений пришел к выводу, что вакуум, т. е. пустоту, можно применить для тепловой изоляции.

Теплота передается движением молекул при их столкновении друг с другом. Если молекул мало, то передача тепла затрудняется. Дьюар показал, что если сделать сосуд с полой оболочкой и выкачать из нее воздух и если в такой сосуд положить, например, лед, он долго не будет таять, так как приток тепла через стенки будет очень мал. Такой сосуд по имени Дьюара часто называют «дьюаровским». Эти сосуды теперь вошли в обиход, ими широко пользуются для хранения пищи при высокой или низкой температуре. В обиходе их называют «термосами». В то время установление принципа, на котором основан термос, было большим научным открытием. Благодаря появлению дьюаровских сосудов стало возможным сохранять жидкий воздух, что позволило более подробно изучать его физические свойства.

Примерно в девяностых годах прошлого века англичанин Бейли и немец Линде, изучая жидкий воздух как смесь двух жидких газов — азота и кислорода, — одновременно нашли, что жидкий воздух, когда частично испаряется, обогащается кислородом, и это объясняется тем, что жидкий азот кипит при несколько более низкой температуре, чем жидкий кислород. Исследования показали, что при атмосферном давлении разница в температуре кипения этих двух жидкостей довольно значительна и составляет около 13°. Линде первым понял, что это явление открывает возможность дешевого получения кислорода и может иметь большое практическое значение. Это произошло спустя 25 лет после получения жидкого воздуха.

С незапамятных времен человечеством были использованы процессы разгонки смесей жидкостей, основанные на разнице температур кипения компонентов. Подобный процесс, например, находит себе применение для получения спирта, даже используется в деревне при перегонке самогона. Как известно, этот процесс разгонки также широко используется в нефтяной промышленности.

Линде пришла мысль применить способ разгонки к жидкому воздуху, чтобы отогнать более легко кипящий азот от кислорода. Таким путем в первых же опытах он легко получил довольно чистый кислород. Это открывало возможность получения кислорода не только гораздо более дешевым путем, чем прежний, химический, который использовался для наполнения кислородных подушек для тяжелобольных, но и в больших объемах, определяемых уже не десятками литров, а сотнями и тысячами кубометров. А если [с.43] так, то, значит, с помощью кислорода можно интенсифицировать не только процесс человеческого дыхания, но и процессы большего масштаба, как например — горение.

Естественно, возникла мысль, что если заставить горючий газ, например, ацетилен, гореть в присутствии одного кислорода без азота, который не принимает участия в реакции горения и является вредной примесью, уносящей тепло, то можно получить значительно более горячее пламя. Опыт показал, что таким высокотемпературным пламенем можно локально плавить любой металл, что дало возможность сплавлять два куска металла без помощи какого бы то ни было легкоплавкого припоя, например, сваривать железо с железом. Так появилась и стала успешно применяться автогенная сварка.

Вскоре после этого был найден и способ автогенной резки металлов. По всей вероятности, вам известно, каких масштабов в промышленности теперь достигли автогенные методы обработки металлов: ни самолет, ни морское судно не могут быть построены без автогенной сварки. И стало это возможным только благодаря тому, что открылась возможность дешево получать кислород, добывая его в больших масштабах непосредственно из воздуха.

Методы разделения жидкого воздуха, впервые предложенные Линде, уже разрабатываются лет пятьдесят. Все время масштабы кислородной промышленности увеличиваются. Например, сейчас в Америке ежегодно потребляется 250 миллионов кубометров кислорода. Это после тех десятков и сотен литров, которые еще в начале века с трудом добывались из бертоллетовой соли...

Естественно, стал возникать следующий вопрос. Мы с пользой интенсифицируем горение, получаем горячее пламя за счет чистого кислорода, подаваемого в рожок автогенной горелки. Но поскольку окислительных процессов в природе очень много, не будет ли полезным их также интенсифицировать?

Почти вся энергетика в природе во всем многообразии ее форм так или иначе связана с окислительными процессами. Дыхание сводится к окислению. За счет получаемой при этом процессе энергии мы работаем и двигаемся, за счет нее поддерживается теплота нашего тела. Так происходит и со всем живым вплоть до большинства простейших бактерий. Но этого мало: 90% нашей техники основано на использовании кислорода. Сжигание бензиновых паров в цилиндрах двигателей внутреннего сгорания, сжигание угля в топках котлов теплоцентралей, в жерле доменной печи, сгорание серного колчедана и еще множество других важнейших технических процессов основано на окислении. Представьте себе, что вслед за интенсификацией дыхания, вслед за интенсификацией пламени горелки сварочного аппарата мы начнем интенсифицировать все процессы в технике, в которых применяется [с.44] кислород. Какую выгоду это может нам дать для народного хозяйства?

Для ответа на этот вопрос надо провести экономический расчет, для которого нужно знать, во-первых, что в каждом отдельном случае дает интенсификация кислородом и, во-вторых, будут ли при этом оправданы расходы на получение кислорода.

Таким образом, перед нами возникает вопрос: как наиболее дешево можно получать кислород? Наука может на это ответить. Поскольку основная стоимость кислорода определяется энергетическими затратами, то нужно определить, какую минимальную мощность, скажем, какое количество киловатт, необходимо затратить для получения из воздуха 1 м3 кислорода в час. Оказывается, что эта величина очень невелика — это составляет 0,08 квтч. Можно доказать, что меньше этого нельзя затратить, получая кислород из воздуха. Сколько же мы тратим на самом деле? В тех установках, которые сейчас существуют, мы затрачиваем мощность в 15 раз большую, чем теоретически минимальная. Это происходит потому, что существующие методы получения кислорода еще далеко не совершенны. Можем ли мы их сделать более совершенными? Да, можем.

Я не имею возможности здесь подробно говорить об источниках потерь при получении кислорода. Замечу лишь, что когда инженеры знают величину потерь и их причины, они обычно находят пути с ними бороться. Определив стоимость получения кислорода, мы можем определить рентабельность применения кислорода в различных областях техники в данное время. Имея эти данные, мы можем предсказать, что в различных областях нашей промышленности произойдет, когда там станут применять кислород.

Ввиду важности этой проблемы для развития нашей промышленности, создано при СНК СССР специальное учреждение — Главкислород, которым я руковожу. При Главкислороде есть Технический совет, куда привлечены видные специалисты тех отраслей промышленности, где предполагается в первую очередь применить кислород. Руководителем одного из отделов Главка по внедрению кислорода в металлургию является академик И. П. Бардин. Вы все хорошо знаете, что это очень знающий и весьма опытный инженер. В «Бюллетене» Главкислорода помещена его статья на тему применения кислорода в металлургии. Поскольку это область, в которой предполагается начать осваивать применение кислорода, то я остановлюсь на ней более подробно и приведу ряд данных из статьи Бардина.

Например, что дает перевод домны на кислородное дутье? Две домны уже работали на кислороде: одна — в Черноречье, другая около Днепропетровска на ДЗМО. Последняя — это крупная домна, она проработала уже 5—6 месяцев. Но, к сожалению, [с.45] на самом интересном месте опыты с ней были прерваны из-за эвакуации, связанной с войной. Но уже полученные результаты достаточно интересны. И. П. Бардин с уверенностью приходит к выводу, что если добавлять достаточно кислорода в доменное дутье (пока еще не оказалось возможным перейти на чисто кислородное дутье), за одно и то же время домна станет давать в 3,5—4 раза больше чугуна. Это происходит благодаря тому, что процесс восстановления руды в домне в присутствии кислорода интенсифицируется и поэтому проходит гораздо скорее.

Экспериментаторы, проводившие эти опыты, показали, что обогащение воздуха на 1 % кислородом поднимает производительность домны на 10%. В дальнейшем полученный чугун уже в конверторах или мартенах можно перевести в сталь, тоже применяя кислород. При этом процесс не только значительно интенсифицируется, но в отсутствие азота сталь получается лучшего качества. В будущем это тоже сулит большую экономию.

Положим, говорит Бардин, что наша металлургия будет доведена до уровня американской, т. е. до выплавки 90—100 млн. тонн стали в год. Если мы это сделаем, то экономия по капиталовложениям при условии перевода металлургии на кислород составит 10 миллиардов рублей. Экономия в стоимости чугуна будет примерно 16—17%. При этом, конечно, учитывается, что количество перерабатываемой руды возрастет пропорционально количеству выпускаемой продукции, так как при этом процесс только интенсифицируется, но не изменяется.

Но здесь следует учесть и другой факт, который вас, как экономистов, может заинтересовать. Оказывается, что при интенсификации производства не все решается одной стоимостью продукции, но следует учитывать и трудозатраты.

Приведу вам такой упрощенный пример. Предположим, нам нужно выработать 1 тонну какого-то продукта. Чтобы его произвести, двум рабочим платят по 300 рублей каждому. Таким образом, тонна продукта обходится вам в 600 рублей. Но вот мы механизировали и интенсифицировали процесс производства. Теперь, чтобы произвести то же количество продукта, нужно участие уже не двух, а одного рабочего, но более квалифицированного, чем прежние. Он затратит на это столько же времени, сколько каждый из прежних двух рабочих. Но ему придется платить уже 700 рублей, т. е. больше, чем прежним двум вместе взятым, и поэтому продукт будет стоить на 100 рублей дороже, хотя человеко-часов затрачено в два раза меньше. Спрашивается: выгодно это или нет?

В масштабе всей страны это выгодно. Рабочему, который освободится от участия в этом процессе, это даст возможность начать учиться. Образование человека стоит меньше по сравнению с тем, [с.46] что приносит государству его более квалифицированный труд. Затраты на образование составляют незначительную часть стоимости продукта, получаемого от труда человека. Поэтому судить о выгодности или невыгодности интенсификации производственного процесса нужно не только по рублям, но также по трудочасам, учитывая рост производительности труда и экономию в рабочей силе.

Кроме того, очевидно, что если рабочий с менее квалифицированной работы переходит на более квалифицированную работу, то в стране поднимается уровень квалификации трудящихся и повышается их жизненный уровень. Поэтому сейчас, когда производят предварительные расчеты рентабельности интенсификации кислородом различных производств, даже в том случае, когда это оказывается убыточным в копейках, но, подымая производительность труда, дает выигрыш в затрате рабочей силы, освобождая из производства наименее квалифицированную часть рабочих, ее в общем следует оценить положительно. Как подсчитал Бардин, в металлургии применение кислорода обещает дать 40% экономии

в рабочей силе.

Я привел пример с черной металлургией, потому что он у нас

наиболее хорошо изучен и в этой области уже имеются надежные экспериментальные данные, на которых основано все, только что мною сказанное. Расчеты показывают, что с этой точки зрения применение кислорода и в ряде других областей народного хозяйства оказывается весьма эффективным.

Я мог бы вам рассказать также о применении кислорода в азотно-туковой промышленности, при получении целлюлозы, для извлечения золота из руд, для изготовления дешевых взрывчатых веществ, так называемых оксиликвитов и т. д. Подробно об этих вопросах можно почитать в «Бюллетене» Главкислорода. Но и этого перечня достаточно, чтобы оценить масштабы тех производств в промышленности, которые возможны с интенсификацией кислородом технологических процессов.

В последние годы как инженер и физик, я со своими сотрудниками в Институте физических проблем занимался задачей разработки более совершенных методов получения кислорода. Я вам уже говорил, что в существующих установках для получения кислорода затрачивается во много раз больше энергии, чем это предельно возможно. Поэтому перед учеными стоит вопрос: как усовершенствовать процесс извлечения кислорода из воздуха так, чтобы затрачивая меньше мощности, удешевить кислород?

Но это еще не вся проблема. Нам нужно получать не только дешевый кислород, но надо получать еще очень много кислорода. В данном случае это не так просто — оказывается, здесь количество переходит в качество. Первая же большая домна, переведенная [с.47] на кислород, будет потреблять столько кислорода, сколько вся наша автогенная промышленность во всем Союзе.

Если мы станем осуществлять необходимое для этих масштабов производство кислорода существующими методами, то возникает принципиальное затруднение. В технике, когда растут мощности, есть одна особенность, которую инженеры больше чувствуют, чем осознают, хотя ее можно достаточно строго обосновать теоретически.

Поясню ее на примере: если увеличивать размеры какой-либо поршневой машины, например, двигателя, рассчитывая получить от нее большую мощность, то окажется, что после определенного размера вес ее на единицу мощности будет не уменьшаться, а увеличиваться. Так, если паровая машина мощностью в 100 лошадиных сил (я беру совершенно условные цифры для характеристики относительных пропорций) весит 1 тонну, то машина мощностью в десять раз большей — в 1000 лошадиных сил, — будет весить не десять тонн, а больше. С увеличением габаритов поршневой машины после некоторого размера мощность ее на единицу веса убывает. Поэтому на практике, если мы хотим построить более мощную поршневую машину, оказывается выгодным не увеличивать размеры цилиндров, а увеличивать их число.

Это можно наблюдать на примере современного авиационного моторостроения. Подымая мощность моторов, сейчас, из соображений веса, приходится увеличивать не размер цилиндров, а их число; оно у нас достигает 24, а новейшие американские моторы имеют до 48 цилиндров*). Вес мотора — это основная трудность при увеличении размеров аэропланов.

Если бы основывать получение кислорода в больших масштабах производства на использовании для получения холода поршневых детандеров и компрессоров, то мы также скоро подошли бы к пределу допустимых размеров кислородных установок и дальнейшее увеличение производства кислорода пришлось бы осуществлять увеличением числа поршневых машин, но не их размеров.

Здесь имеет место полная аналогия с тем, что происходит при росте мощности теплоэлектроцентралей. Если бы сейчас современные мощные ТЭЦ стали оборудовать уаттовскими поршневыми машинами, которые изредка еще встречаются на старых волжских пароходах или на маленьких электростанциях, то эти машины должны были бы приобрести такие размеры, которые можно считать неосуществимыми. Как хорошо известно, решение проблемы увеличения мощности осуществляется паровой турбиной, изобре-

*) Эта лекция была прочитана до того, как авиация перешла на турбовинтовые и турбореактивные двигатели. С поршневым двигателем увеличение размеров аэропланов в то время уже становилось невозможным. [с.48]

тенной Лавалем и Парсонсом, которая замечательна тем, что может дать на единицу веса во много раз большую мощность, чем поршневая паровая машина. Поэтому теперь крупные электростанции строят только на турбинах.

Первоначально ожижение воздуха производилось методом, в котором использовался так называемый эффект Джоуля—Томпсона. Это явление заключается в том, что при свободном расширении газа он охлаждается тем больше, чем выше давление сжатого газа. Обычно оно было около 200 атмосфер. В дальнейшем во Франции Клод, а в Германии Гейланд охлаждение производили тем, что сжатый компрессором воздух заставляли расширяться в специальной поршневой машине, называемой детандером, которая действует весьма похоже на паровую. Как известно, паровая машина работает за счет расширения горячего пара, который, после того, как совершит работу, покидает машину в значительно более холодном состоянии. Сходство заключается в том, что сжатый воздух при расширении также будет производить работу и охлаждаться. Этим и пользуются в холодильной поршневой машине, которую называют детандером. Сжатый воздух, поступив в ее цилиндр, расширяясь, производит работу и охлаждается. Расчеты показали, что, переходя к получению жидкого воздуха в больших масштабах, чтобы из него разгонкой отделять кислород, следует, как и при получении больших мощностей, отказаться от поршневых компрессоров и детандеров и перейти к турбинам.

Возможность применения холодильных турбин была высказана учеными еще давно. По-видимому, первым был известный английский физик Рэлей. Еще 40 лет тому назад он предложил применять турбину при ожижении воздуха. Обоснование этого предложения было несколько иное, не связанное с необходимостью ожижать воздух в больших масштабах. Оно было вызвано трудностями смазки поршневых детандеров. При низких температурах все смазочные жидкости замерзают. Турбина же при работе не требует смазки. С тех пор был сделан ряд попыток применить турбины как детандеры, но добиться значительного успеха не удавалось.

Тут мне придется рассказать и о наших работах в этой области, поскольку как раз в нашем институте, применяя в качестве детандера турбину, удалось впервые получить жидкий воздух и при этом с достаточно хорошими показателями. Та новая идея, которой мы руководствовались, настолько проста, что даже не понятно, почему до сих пор на нее не обратили внимания.

Общий ход рассуждений (конечно, схематизируя) до наших работ был следующим: для того, чтобы получать холод, строили поршневые детандеры и, чтобы поднять их к.п.д., прибегали к высоким давлениям точно так же, как в энергетике стремились [с.49] пользоваться поршневыми машинами высокого давления пара. Потом, для получения еще больших мощностей, в энергетике стали поршневые машины заменять турбинами. Следовательно, для получения жидкого воздуха в больших количествах нужно сделать то же самое. И. следуя этой аналогии, инженеры стали применять для холодильной техники в качестве детандеров общепринятые типы паровых турбин. На практике оказалось, что холод они, конечно, давали, но с плохим к.п.д.

Этот случай лишний раз показывает нам, как осторожно надо пользоваться аналогией. Инженеры, загипнотизированные аналогией тепловых процессов в холодильных и паровых машинах, просмотрели очень важный фактор. Они упустили то, что воздух, благодаря своей большой сжимаемости при низких температурах, становится настолько плотным, что по своим физическим свойствам гораздо больше напоминает воду, чем пар. Это приводит к тому, что холодильные турбины надо строить не по образцу паровых, а по образцу водяных, т. е. применяя несколько измененные, хорошо всем известные реактивные турбины типа Жонваля. Когда я обратил внимание конструкторов наших кислородных установок, что они применяют не тот тип турбины, мое замечание не было серьезно воспринято. Мне ответили примерно так: все за границей идут по пути паровых турбин; то, что вы предлагаете, идет в противоречие с тем, что делают там фирмы. Это отвлеченная теория ученого.

Тогда было решено сконструировать и построить у нас в институте холодильную турбину, подобную гидротурбине, и проверить на опыте, будет ли она иметь такой же высокий к.п.д., какой характерен для водяных турбин. Эти работы заняли 2—3 года и окончились успешно. Теперь наша турбина уже получила общее признание как у нас, так и за рубежом, и была в конечном итоге отмечена правительством премией.

Этот пример является хорошей иллюстрацией того, как люди не обращают внимание на совершенно очевидное — при понижении температуры воздух приобретает новое качество, присущее жидкости, хотя и остается при этом газообразным телом. Загипнотизированные общепринятым решением проблемы конструкторы с трудом воспринимают новое, даже когда решение проблемы является более простым.

Когда при конструировании турбины эта особенность воздуха при низких температурах была учтена, открылась возможность получения кислорода в больших масштабах. В военное время не рекомендуется широко распространять цифровые данные. Но я могу вам сказать, что есть завод, который успешно работает на наших турбинах уже в продолжение нескольких тысяч часов. Третья часть всего кислорода в Москве делается сейчас таким путем. [с.50] (Один из первых экспериментальных образцов ротора радиального турбодетантера изображен на рисунке.)

Это направление в получении кислорода сейчас расширяется. Но в жизни при развитии всего нового неизбежны трудности. Хотя сама по себе идея и проста, но при ее выполнении встречается ряд новых технических трудностей. Например, при осуществлении высокооборотной турбины, работающей в плотной среде холодного газа, возникает неустойчивость ротора. Пришлось разработать новый тип стабилизаторов. Приходится преодолевать и трудности психологической природы. Как всегда в отношении к новому, люди тяжелы на подъем, и в нашей промышленности немало консерватизма. Преодолев эти обычные жизненные явления, мы начинаем в области техники глубокого холода и применения кислорода опережать Запад. И здесь начинает выявляться одна очень интересная особенность, связанная с решением в народном хозяйстве такого рода проблем.

Оказывается, что в некотором отношении комплексные нововведения большого масштаба у нас в стране проходят легче, чем в капиталистических странах. Какое-нибудь маленькое изобретение у нас часто бывает продвинуть в жизнь труднее, но большое новое направление в технике, которое влечет за собой крупный сдвиг в ряде областей промышленности, у нас оказывается осуществить легче. Причина этого, по-видимому, в следующем. Чтобы быть конкретным, разберу пример, близкий к действительности.

kap-13.jpg kap-14.jpg

[с.51]

Предположим, что для осуществления большого нововведения нужно участие двух — трех отраслей промышленности. Например, использование горения отходящих газов мартеновского производства при использовании кислорода обещает быть рентабельным для энергетического хозяйства. У нас в этом заинтересованы три наркомата: Наркомат электростанций, который может воспользоваться отходящим газом для теплоэлектроцентралей, Наркомат черной металлургии, который подымает производительность мартеновских печей при переводе плавки на кислород, и Главкислород, который должен обеспечить мартены кислородом. Все три наркомата являются органами единого социалистического хозяйства, в то время как при капиталистическом хозяйстве эти области промышленности обычно принадлежат не зависимым друг от друга в финансовом отношении фирмам. Одна из них может получить от этой комбинации большую прибыль, другая меньшую, а третья может даже понести убыток.

Хотя в сумме народное хозяйство страны выиграет, но сочетать интересы трех частных предпринимателей оказывается делом сложным в юридическом и финансовом отношении, в то время как у нас, когда расчет основывается на общегосударственной выгоде, одно постановление правительства является в равной мере обязательным для всех трех наркоматов, и можно просто обеспечить успешное развитие такого рода комплексных технических проблем. Таких примеров можно привести много. Мы имеем еще одно огромное преимущество в развитии нового в комплексном хозяйстве, которое мы пока еще плохо используем. Нетрудно видеть, что мы располагаем возможностью, не боясь риска, ставить опыты в технике в очень больших масштабах. А в новом деле нельзя избежать риска. Никогда ничто новое не делается наверняка, поскольку всегда могут появиться трудности, которые нельзя было заранее предвидеть. Если в масштабе всего государства открывается перспектива миллиардной экономии, то риск в несколько десятков миллионов, очевидно, будет оправдан и не разорит государство. В капиталистической стране даже очень крупная фирма не может позволить себе рисковать такой значительной суммой и на большой эксперимент не дерзнет. Как известно, пока главное, что нас тормозит, — это консерватизм и привычка к рутине отдельных бюрократических работников.

Делая этот доклад, я имел в виду, что вы — ответственные партийные работники, ведущие общественные деятели, пропагандисты, — поэтому должны быть главными борцами с консерватизмом, с косностью наших работников хозяйственного аппарата. Я надеюсь, что когда вы разъедетесь по стране, каждый из вас будет вспоминать мой доклад и будет бороться за все новое и прогрессивное в нашей социалистической стране. [с.52]

О ПРИРОДЕ ШАРОВОЙ МОЛНИИ Статья в журнале «Доклады АН СССР», N 2, 1955 г.

Природа шаровой молнии пока остается неразгаданной. Это надо объяснить тем, что шаровая молния — редкое явление, а поскольку до сих пор нет указаний на то, что явление шаровой молнии удалось убедительно воспроизвести в лабораторных условиях, она не поддается систематическому изучению. Было высказано много гипотетических предположений о природе шаровой молнии [1, 2], но то, о котором пойдет речь в этой заметке, по-видимому, еще не высказывалось. Главное, почему на него следует обратить внимание, это то, что его проверка приводит к вполне определенному направлению экспериментальных исследований.

Нам думается, что ранее высказанные гипотезы о природе шаровой молнии неприемлемы, так как они противоречат закону сохранения энергии. Это происходит потому, что свечение шаровой молнии обычно относят за счет энергии, выделяемой при каком-либо молекулярном или химическом превращении, и таким образом, предполагают, что источник энергии, за счет которого светится шаровая молния, находится в ней самой. Это встречает следующее принципиальное затруднение.

Из основных представлений современной физики следует, что потенциальная энергия молекул газа в любом химическом или активном состоянии меньше той, которую нужно затратить на диссоциацию и ионизацию молекул. Это дает возможность количественно установить верхний предел энергии, которая может быть запасена в газовом шаре, заполненном воздухом и размерами с шаровую молнию.

С другой стороны, можно количественно оценить интенсивность излучения с ее поверхности. Такого рода прикидочные вычисления показывают, что верхний предел времени высвечивания получается много меньше действительно наблюдаемого у шаровых молний. Этот вывод теперь также подтверждается опытным путем из опубликованных данных [3] о времени высвечивания облака после ядерного взрыва. Такое облако сразу после взрыва, несомненно, является полностью ионизованной массой газа, и поэтому его можно рассматривать как заключающее в себе предельный запас потенциальной энергии. Поэтому, казалось бы, оно должно высвечиваться за время большее, чем наиболее длительно существующая шаровая молния подобного размера, но на самом деле этого нет.

Поскольку запасенная энергия облака пропорциональна объему (d3), а испускание поверхности ~ d2, то время высвечивания энергии [с.53] из шара будет пропорционально d, его линейному размеру. Полностью облако ядерного взрыва при диаметре d, равном 150 м, высвечивается за время меньшее, чем 10 сек [3], так что шар диаметром в 10 см высветится за время меньшее, чем 0,01 сек. Но на самом деле, как указывается в литературе, шаровая молния таких размеров чаще всего существует несколько секунд, а иногда даже минуту [1, 2].

Таким образом, если в природе не существует источников энергии, еще нам не известных, то на основании закона сохранения энергии приходится принять, что во время свечения шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник энергии вне объема шаровой молнии. Поскольку шаровая молния обычно наблюдается «висящей» в воздухе, непосредственно не соприкасаясь с проводником, то наиболее естественный, и, по-видимому, единственный способ подвода энергии — это поглощение ею приходящих извне интенсивных радиоволн.

Примем такое предположение за рабочую гипотезу и посмотрим, как согласуются с ней наиболее характерные из описанных явлений, сопровождающих шаровую молнию [1, 2, 4].

Если сравнить поведение шаровой молнии со светящимся облаком, оставшимся после ядерного взрыва, то бросается в глаза следующая существенная разница. После своего возникновения облако ядерного взрыва непрерывно растет и бесшумно тухнет. Шаровая молния в продолжение всего времени свечения остается постоянных размеров и часто пропадает со взрывом. Облако ядерного взрыва, будучи наполнено горячими газами с малой плотностью, всплывает в воздух и поэтому двигается только вверх. Шаровая молния иногда стоит неподвижно, иногда движется, но это движение не имеет предпочтительного направления по отношению к земле и не определяется направлением ветра. Теперь покажем, что эта характерная разница хорошо объясняется выдвинутой гипотезой.

Известно, что эффективное поглощение электромагнитных колебаний ионизованного газового облака — плазмы — может происходить только при резонансе, когда собственный период электромагнитных колебаний плазмы совпадает с периодом поглощаемого излучения. При тех интенсивностях ионизации, которые ответственны за яркое свечение шара молнии, резонансные условия всецело определяются его наружными размерами.

Если считать, что поглощаемая частота соответствует собственным колебаниям сферы, то нужно, чтобы длина К поглощаемой волны была приблизительно равна четырем диаметрам шаровой молнии (точнее, λ = 3,65 d). Если в том же объеме ионизация газа слаба, то, как известно, тогда период колебаний плазмы в основном определяется степенью ионизации, причем соответствующая [с.54] резонансная длина волны всегда будет больше, чем та, которая определяется размерами ионизованного объема и, как мы указали, равна 3,65 d.

При возникновении шаровой молнии механизм поглощения можно себе представить так: сперва имеется небольшой по сравнению с (π/6) d3 объем плазмы, но если ионизация его будет слаба, то все же резонанс с волной длины λ = 3,65 d будет возможен и произойдет эффективное поглощение радиоволн. Благодаря этому ионизация будет расти, а с ней и начальный объем сферы, пока она не достигнет диаметра d. Тогда резонансный характер процесса поглощения будет определяться только формой, и это приведет к тому, что размер сферы шаровой молнии станет устойчивым.

Действительно, предположим, что интенсивность поглощаемых колебаний увеличивается, тогда температура ионизованного газа несколько повысится и сфера раздуется, но такое увеличение выведет ее из резонанса и поглощение электромагнитных колебаний уменьшится, сфера остынет и вернется к размерам, близким к резонансным. Таким образом можно объяснить, почему наблюдаемый диаметр шаровой молнии в процессе свечения остается постоянным.

Размеры наблюдаемых шаровых молний лежат в интервале от 1 до 27 см [4]. Согласно нашей гипотезе, эти величины, помноженные на четыре, дадут тот диапазон волн, который ответствен в природе за создание шаровых молний. Наиболее часто наблюдаемым диаметрам шаровых молний от 10 и 20 см [1] соответствуют длины волн от 35 до 70 см.

Местами, наиболее благоприятными для образования шаровых молний, очевидно, будут области, где радиоволны достигают наибольшей интенсивности. Такие места будут соответствовать пучностям напряжения, которые получаются при разнообразных возможных интерференционных явлениях. Благодаря повышенному напряжению электрического поля в пучностях, их положение будет фиксировать возможные места шаровой молнии. Такой механизм приводит к тому, что шаровая молния будет передвигаться с передвижением пучности, независимо от направления ветра или конвекционных потоков воздуха [1, 2].

Как возможный пример такого фиксированного положения шаровой молнии рассмотрим случай, когда радиоволны падают на проводящую поверхность земли и отражаются. Тогда благодаря интерференции образуются стоячие волны и на расстояниях, равных К, длине волны, помноженной на 0,25; 0,75; 1,25; 1,75 и т. д., будут образовываться неподвижные в пространстве пучности, в которых напряжение электрического поля удваивается по сравнению с падающей волной. Вблизи этих поверхностей благодаря [с.55] повышенному напряжению будут благоприятные условия как для создания начального пробоя, так и для дальнейшего развития и поддержания ионизации в облаке, образующем шаровую молнию. Таким образом, поглощение электромагнитных колебаний ионизованным газом может происходить только в определенных поверхностях, параллельных рельефу земли. Это и будет фиксировать в пространстве положение шаровой молнии.

Такой механизм объясняет, почему шаровая молния обычно создается на небольшом расстоянии от земли и часто передвигается в горизонтальных плоскостях. При этом наименьшее расстояние центра шаровой молнии до проводящей поверхности будет равно 1/4 длины волны и, следовательно, зазор между отражающей поверхностью и краем шара должен быть примерно равен его радиусу.

При интенсивных колебаниях вполне возможно, чтобы в ряде пучностей образовывались отдельные шаровые молнии, на расстоянии полудлины волны друг от друга. Такие цепочки из шаровых молний наблюдаются, они носят название «четочных» молний и даже были засняты [2].

Наша гипотеза также может объяснить, почему иногда шаровая молния пропадает со взрывом, который не причиняет разрушений [1, 2]. Когда подвод мощности внезапно прекращается, то при малых размерах остывание шара произойдет так быстро, что образуется сфера разреженного воздуха, при быстром заполнении которой возникает ударная волна небольшой силы. Когда же энергия медленно высвечивается, гашение будет процессом спокойным и бесшумным.

Выдвинутая нами гипотеза может дать удовлетворительное объяснение, пожалуй, наиболее непонятному из свойств шаровой молнии — ее проникновению в помещение через окна, щели и чаще через печные трубы. Попав в помещение, светящийся шар в продолжение нескольких секунд либо парит, либо бегает по проводам [1, 2, 4]. Таких случаев описано столько, что их реальность не вызывает сомнения.

С нашей точки зрения, весьма интересен случай [5], когда в аэроплан, пересекающий грозовую тучу на высоте 2800 м, влетела шаровая молния. Нашей гипотезой все эти явления объясняются тем, что проникновение в замкнутые помещения шаровых молний происходит благодаря тому, что они следуют по пути коротковолновых электромагнитных колебаний, распространяющихся либо через отверстия, либо по печным трубам или проводам как по волноводам. Обычно размер печной трубы как раз соответствует тому критическому сечению волновода, в котором могут свободно распространяться волны длиною до 30—40 см, что и находится в соответствии с наблюдаемыми размерами шаровых молний, проникающих в помещение [1]. [с.56]

Таким образом, гипотеза о происхождении шаровой молнии за счет коротковолновых электромагнитных колебаний не только может объяснить ряд других известных и непонятных явлений, связанных с явлением шаровой молнии, как то: ее фиксированные размеры, малоподвижное положение, существование цепочек, взрывная волна при исчезновении, — а также ее проникновение в помещение.

Тут следует поставить вопрос, не происходит ли давно наблюдаемое в природе явление тлеющего кистеобразного свечения, называемого «огни св. Эльма», также за счет электромагнитных колебаний, но более слабых мощностей. До сих пор [6] это свечение объяснялось стеканием зарядов с острия, происходящим благодаря постоянному напряжению, возникающему при больших разностях потенциалов между землей и тучей. Такое объяснение было вполне естественно до тех пор, пока это свечение наблюдалось на земле, где можно указать замкнутый путь постоянного тока, но теперь описаны случаи, когда «огни св. Эльма» продолжительное время наблюдаются на фюзеляжах летящих самолетов [7]. Поэтому возможно, что и тут выдвинутая нами гипотеза может помочь решению трудности.

Хотя выдвинутая гипотеза успешно разрешает ряд основных трудностей понимания процесса шаровой молнии, все же следует указать, что этим еще вопрос до конца не решается, так как нужно еще показать существование в природе электромагнитных колебаний, питающих шаровую молнию. Тут в первую очередь нужно ответить на естественно возникающий вопрос: почему во время грозы излучения электромагнитных колебаний в области той длины волны, которая нужна для создания шаровой молнии, до сих пор не описаны в литературе?

Пока еще не было направлено внимание на обнаружение во время грозы этих волн, нам думается, можно предположить следующее. Поскольку шаровая молния — редкое явление, то естественно считать, что возникновение соответствующих радиоволн тоже редко происходит, кроме того, еще реже можно ожидать, чтобы они попадали на приемные аппараты в той коротковолновой области радиоволн от 35 до 70 см, которая пока еще сравнительно мало используется. Поэтому как следующий шаг проверки выдвинутых предположений следует выработать соответствующий экспериментальный метод наблюдения, попытаться обнаружить во время грозы радиоизлучения в указанном коротковолновом диапазоне волн.

Что касается источника этих радиоволн, то, по-видимому, есть два факта в наблюдениях над шаровыми молниями, которые могут помочь пролить свет на механизм их возникновения. Один из них — то, что шаровая молния наиболее часто возникает к концу [с.57] грозы; второй — то, что шаровой молнии непосредственно предшествует обычная.

Первый факт указывает, что наличие ионизованного воздуха помогает созданию радиоволн, а второй — что возбудителем этих колебаний является грозовой разряд. Это ведет к естественному предположению, что источником радиоволн является колебательный процесс, происходящий в ионизованной атмосфере либо у тучи, либо у земли. В последнем случае, если источник находится у земли, то район, захваченный интенсивным радиоизлучением, будет ограничен и будет непосредственно прилегать к месту, где находится шаровая молния. Интенсивность радиоколебаний может быстро падать при удалении от этого места, и поэтому на значительных расстояниях для наблюдения будет нужна чувствительная аппаратура. Если радиоволны излучаются самой грозовой тучей, то они будут захватывать большие районы и их обнаружение даже малочувствительным приемником не представит труда.

Наконец, как второе возможное направление для экспериментальной проверки выдвинутой гипотезы надо указать на возможность создания разряда, подобного шаровой молнии, в лабораторных условиях. Для этого, очевидно, нужно располагать мощным источником радиоволн непрерывной интенсивности в дециметровом диапазоне и уметь их фокусировать в небольшом объеме. При достаточном напряжении электрического поля должны возникнуть условия для безэлектродного пробоя, который путем ионизационного резонансного поглощения плазмой должен развиться в светящийся шар с диаметром, равным примерно четверти длины волны.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1. W. Brand, Der Kugelblitz, Hamburg, 1923.

2. И. С. Стекольников, Физика молнии и грозозащита, Изд-во АН СССР, 1943, стр. 145.

3. The Effects of Atomic Weapons, London, 1950, § 2.15.

4. F. Rossmann, Ober den Kugelblitz, Wetter und Klima, Marz — April 1949, S. 75.

5. J. Durward, Nature, April 1952, p. 563.

6. Г. Бенндорф, Атмосферное электричество (перевод с нем.), ГИТТЛ, 1934, стр. 51.

7. В. F, J. Schonland, The Flight of Thunderbolts, Oxford, 1950, p. 47.

[с.58]



Дальше...